Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mass-Producing Tunable Magnetic Nanoparticles

Abstract:
Taking a cue from the semiconductor industry, a team of investigators at Stanford University has developed a method of producing unlimited quantities of highly magnetic nanoparticles suitable for use as magnetic resonance tumor imaging agents. Equally important, this method can be easily tailored to produce nanoparticles with a wide range of well-defined magnetic properties. Tunability creates the opportunity to use these nanoparticles in multiplexed biosensing applications akin to those now being developed using tunable quantum dots of multiple colors.

Mass-Producing Tunable Magnetic Nanoparticles

Bethesda , MD | Posted on May 21st, 2008

Shan Wang, Ph.D., a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, one of eight Centers of Cancer Nanotechnology Excellence (CCNEs) funded by the NCI, led a research team that has been exploring methods of creating large, uniform batches of magnetic nanoparticles. Their current work, reported in the journal Advanced Materials, describes a technique for fabricating magnetic nanoparticles that involves forming two magnetic layers sandwiched around a layer of nonmagnetic material.

To create these sandwich particles, the investigators use a technique known as nanoimprint lithography to create cobalt-iron nanodisks. As a nonmagnetic spacer, the researchers used nanometer-thick layers of ruthenium. By varying the thickness of the ruthenium spacer layer, the investigators found they could alter the magnetic properties of the resulting nanodisks in a predictable manner. The disks are coated with a thin layer of tantalum to stabilize them.

In addition to producing nanoparticles with tunable magnetic properties, the researchers showed that they could use nanoimprint lithography to add additional layers of materials that afforded the resulting disks with other useful properties. For example, the investigators added a layer of gold onto the tantalum surfaces, creating magnetic nanoparticles that could also be detected using surface plasmon resonance imaging, a sensitive optical imaging technique.

This work, which was supported by the NCI's Alliance for Nanotechnology in Cancer, is detailed in the paper "High-Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties." There is no abstract available for this paper, but a citation is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580


Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View citation

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project