Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel Protein Nanoparticles ‘Shape’ the Future of Disease

Abstract:
Researchers at the University of North Carolina-Chapel Hill (UNC) have granted an exclusive license to Liquidia Technologies for a protein particle fabrication method that could greatly expand the reach of protein therapeutics. Proteins are large organic molecules that perform highly specific and complex functions in the body, making them an ideal instrument to diagnose and cure disease. However, protein solubility, distribution, stability, and aggregation have hampered the development of this therapeutic class.

Novel Protein Nanoparticles ‘Shape’ the Future of Disease

Research Triangle Park, NC | Posted on May 14th, 2008

Using a nano-fabrication process known as PRINT® (Particle Replication in Non-Wetting Templates), the researchers formed protein particles of pure insulin and albumin, as well as albumin particles containing therapeutics such as siRNA and paclitaxel. These particles are designed with a predetermined size and shape profile that may optimize protein stability, solubility, and concentration, while minimizing inter-particle forces that cause aggregation.

"We expect this discovery to dramatically expand the capability and efficacy of existing protein therapeutics," said Joseph DeSimone, Liquidia founder and professor of chemistry and chemical engineering at UNC. "Design of protein particles in such a way that affords control over size and shape, and preserves protein biofunctionality, has never before been accomplished."

Unlike previous techniques, which have produced "polydisperse" particle mixtures with sizes ranging from hundreds of nanometers to tens of microns, the PRINT process forms particles of uniform size and shape. Liquidia Technologies has obtained a worldwide license to all rights for the PRINT platform and is working with partners to design protein particle therapeutics for effective delivery to the lung and other targets.

"This technology has the unique opportunity to overcome the challenges associated with protein therapeutics and contribute to the development of highly specific therapeutics for a wide range of diseases," says Liquidia CEO, Neal Fowler. "Having recently led a company that specializes in developing and commercializing biologics, I have a great appreciation and excitement for the new biotherapeutic opportunities that the PRINT platform may enable."

DeSimone and Jennifer Kelly, a graduate student in DeSimone's lab, led the research effort at UNC. Their work was published in the April 23 issue of the Journal of the American Chemical Society.

####

About Liquidia Technologies
Liquidia Technologies Inc. is a privately-held nanotechnology company that designs, develops, and manufactures precisely engineered particles and films for a wide variety of life and materials science applications. Within life sciences, Liquidia is focused on the development of Engineered Drug Therapies™ for nucleic acid delivery, and highly targeted therapeutics for the treatment of cancer and other diseases. The company was founded in 2004 on the discoveries of Professor Joseph DeSimone and colleagues at the University of North Carolina, Chapel Hill and is located in Research Triangle Park, North Carolina.

For more information, please click here

Contacts:


Liquidia Technologies
Elle Pishny
919-328-4361

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project