Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Multiscale Modeling of Composite Materials

April 26th, 2008

Multiscale Modeling of Composite Materials

Abstract:
Understanding the deformation or thermal behavior of composites has always been a complex problem. One must take into consideration the behavior of the reinforcement (particle, fiber, or whisker), matrix, and, of course, the interface or interphase formed between these components. Clearly, the interplay between the components in a composite is also key. Load transfer from the matrix to the fiber is directly related to the aspect ratio of the fiber, as well as the yield stress of the matrix (or, in brittle composites, the shear strength of the interface). With the advent of new computational methodologies and techniques, not to mention the sheer increase in efficiency and speed of computer processors, multiscale modeling has become an important part of understanding the behavior of composite materials. Multiscale modeling is particularly suited toward composites because of the multiple length scales involved as well as the overall complex nature of composite behavior. The three papers in this section illustrate the importance of multiscale modeling of composites. A variety of numerical computational techniques are used, such as finite-element modeling, crystal plasticity, and atomistic modeling, to understand the behavior of the composite, More importantly, two or more of these techniques are used in combination to stitch together the behavior at different length scales. The paper by A. Misra et al. discusses the deformation behavior of nanoscale metallic multilayered composites. Metallic composites with layers at the nanoscale exhibit very high strengths. The mechanical behavior of these composites was studied in terms of the atomic structure at the interfaces between the layers. The atomic level modeling is particularly needed here because the layer thickness is in the range of a few nanometers. Information obtained from the atomistic modeling, such as the critical stress required for dislocations to overcome the barrier at the interface and be transmitted to adjacent layers, are used in dislocation dynamics simulations to study dislocation-dislocation interactions. The third level of modeling involves crystal plasticity modeling of phenomena on the length scale of a grain and encompasses information from atomistic and dislocation dynamics simulations.

Source:
redorbit.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project