Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Memory in artificial atoms

Abstract:
Three of our nano-physicists have made a discovery that can change the way we store data on our computers. This means that in the future we can store data much faster, and more accurate. Their discovery has been published in the scientific journal Nature Physics.

Memory in artificial atoms

Copenhagen, Denmark | Posted on April 7th, 2008

Computer memory

Your computer has two equally important elements: computing power and memory. Traditionally, scientists have developed these two elements in parallel. Computermemory is constructed from magnetic components, while the media of computing is electrical signals. The discovery of the scientists at Nano-Science Center and the Niels Bohr Institute, Jonas Hauptmann, Jens Paaske and Poul Erik Lindelof, is a step on the way towards a new means of data-storage, in which electricity and magnetism are combined in a new transistor concept.
Carbon nanotubes as transistors

Jonas Hauptmann, PhD student, has carried out the experiments under supervision of Professor Poul Erik Lindelof. Jonas Hauptmann says:

- We are the first to obtain direct electrical control of the smallest magnets in nature, one single electron spin. This has vast perspectives in the long run. In our experiments, we use carbon nanotubes as transistors. We have placed the nanotubes between magnetic electrodes and we have shown, that the direction of a single electron spin caught on the nanotube can be controlled directly by an electric potential. One can picture this single electron spin caught on the nanotube as an artificial atom.

Direct electrical control over a single electron spin has been acknowledged as a theoretical possibility for several years. Nevertheless, in spite of many zealous attempts worldwide, it is only now with this experiment that the mechanism has been demonstrated in practice. This is why the discovery of the scientists has attracted a lot of interest.

Professor at Nano-Science Center and the Niels Bohr Institute, Jens Paaske, has been in charge of the data analysis. Jens Paaske says:

- Transistors are important components in every electronic device. We work with a completely new transistor concept, in which a carbon nanotube or a single organic molecule takes the place of the traditional semi-conductor transistor. Our discovery shows that the new transistor can function as a magnetic memory.

####

About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The purpose of the University – to quote the University Statute – is to ’conduct research and provide further education to the highest academic level’.

Approximately one hundred different institutes, departments, laboratories, centres, museums, etc., form the nucleus of the University, where professors, lecturers and other academic staff, as well as most of the technical and administrative personnel, carry out their daily work, and where teaching takes place.

For more information, please click here

Contacts:
PhD student Jonas Hauptmann
Mobile: +45 26 24 27 72

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project