Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Clusters Offer Surprises for Physical Chemists

Continuous negative ion mass spectrometer. Credit Bowen Lab/JHU
Continuous negative ion mass spectrometer. Credit Bowen Lab/JHU

Abstract:
Extremely small scale materials behave differently than one might expect when they come into close proximity to one another. The principles of basic physical chemistry are not quite as clear cut as one might imagine. And it is these properties that inspire the research of Kit Bowen Jr., the E. Emmett Reid Professor of Chemistry in the Krieger School of Arts and Science and affiliated faculty member of the Institute for NanoBioTechnology.

Nanoparticle Clusters Offer Surprises for Physical Chemists

Baltimore, MD | Posted on April 2nd, 2008

Bowen studies the intermolecular action of nanoparticles and of clusters—aggregates of atoms and molecules. The study of size specific clusters provides an insightful means of addressing fundamental problems in physical chemistry, Bowen explains, and his lab is developing techniques to look at a very wide range of cluster components in biological systems, chemistry problems and material science.

To study clusters, Bowen uses a very sensitive chemistry probe known as negative ion photoelectron spectroscopy, which is based on the fact that it takes a certain amount of energy to knock an electron from a negatively charged ion.

"The technique uses light to ionize excess electrons from negative ions," Bowen says. "The measurement of the electrons' energies gives information about the electronic structure of the neutral species produced when an electron leaves its anion." Using this method, recent studies have discovered whole groups of chemical species, such as types of aluminum hydrides, not previously known to be possible. Another study co-authored by Bowen and published in Science (Feb. 15, 2008) examined electron-induced proton transfer in acid-base reactions.

"In terms of application of this research, it is more oriented toward fundamental principle studies," Bowen says. "However, it could possibly be useful for future hydrogen storage applications, magnetic tapes, and as catalysts."

In an academic setting, Bowen has been able to freely pursue novel ideas, something that might not be possible in industry. "Industry needs science to guide their production development just like sailors need the North Star to navigate at night," he says, adding that collaboration has been important for his academic endeavors. "Every professor has different skills."

Bowen's passion for science is contagious and he is devoted to scientific outreach, realizing the importance of being exposed to science at a young age. In the past, some high school and even middle school students have spent time over the summer in Bowen's lab. Some of the students chose to further their education in science as a result. Several have gone on to earn their PhD's in chemistry or physics, he says.

Ziqiu "Tommy" Tong, pre-doctoral student in INBT's NanoBio Med program, contributed to this article, which was written as part of the Intersession 2008 course requirements of Science Writing for Scientists and Engineers.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:

* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

*
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Soren N. Eustis, Dunja Radisic, Kit H. Bowen, Rafa A. Bachorz, Maciej Haranczyk, Gregory K. Schenter, Maciej Gutowski. Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia. Science, Feb. 15, 2008: Vol. 319. No. 5865, pp. 936 – 939.

Kit Bowen research group Web site

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project