Home > News > Hypercubes Could Be Building Blocks of Nanocomputers
April 2nd, 2008
Hypercubes Could Be Building Blocks of Nanocomputers
Abstract:
Multi-dimensional structures called hypercubes may act as the building blocks for tomorrow's nanocomputers - machines made of such tiny elements that they are dominated not by forces that we're familiar with every day, but by quantum properties.
As Samuel Lee and Loyd Hook from the University of Oklahoma explain, microelectronic devices are continually getting smaller and faster, in accordance with Moore's Law. Already, integrated circuits and transistors are reaching the nanometer scale, although they still operate based on the physical properties on the macro-scale. True nanoelectronics, the researchers explain, are not just scaled down microelectronics, but devices that will be dominated by quantum properties, and will therefore require new architectures and novel structures.
"Compared to today's microcomputers, the main advantages of future nanocomputers are higher circuit density, lower power consumption, faster computation speed and more parallel and distributed computing capabilities," Lee told PhysOrg.com.
Source:
physorg.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Quantum nanoscience
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||