Home > News > Identifying bacteria with gold-nanoparticle constructs
March 27th, 2008
Identifying bacteria with gold-nanoparticle constructs
Abstract:
Bacteria cause millions to suffer from a variety of infections every year. Current methods of identifying bacteria require expensive equipment or a great deal of time—the most common method for identifying bacteria, plating and culturing, requires at least 24 hours. A quicker method of identifying harmful bacteria would be beneficial to many fields, including medical diagnosis and food inspection.
Chemists have devised a sensor array to identify bacteria by fluorescence. The general design involves associating a negatively charged conjugated polymer with positively charged chemicals on the surface of a gold nanoparticle. The negatively charged conjugated polymer is fluorescent on its own but, when it's associated with the nanoparticle, the fluorescence is quenched. Bacteria, which have negatively charged surfaces, can dissociate the conjugated polymer. Once the conjugated polymer has been freed, the fluorescence is restored. Different bacteria species may or may not trigger this reaction depending on the type of chemicals used on the surface of the gold nanoparticle.
Source:
arstechnica.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||