Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Future 'Quantum Computers' Will Offer Increased Efficiency and Risks

Photo: Jacque Brund.

Enrique del Barco has made a discovery that could revolutionize cryptography.
Photo: Jacque Brund.
Enrique del Barco has made a discovery that could revolutionize cryptography.

Abstract:
By Zenaida Gonzalez Kotala


An unusual observation in a University of Central Florida physics lab may lead to a new generation of "Quantum Computers" that will render today's computer and credit card encryption technology obsolete.

Future 'Quantum Computers' Will Offer Increased Efficiency and Risks

Orlando, FL | Posted on March 6th, 2008

The observations are documented this week in the online version of Nature Physics under Advance Online Publication (www.nature.com/nphys/index.html). The title of UCF Professor Enrique del Barco's paper is "Quantum Interference of Tunnel Trajectories between States of Different Spin Length in a Dimeric Molecular Nanogmagnet."

Consumers, credit card companies and high-tech firms rely on cryptography to protect the transmission of sensitive information. The basis for current encryption systems is that computers would need thousands of years to factor a large number, making it very difficult to do.

However, if del Barco's observation can be fully understood and applied, scientists may have the basis to create quantum computers -- which could easily break the most complicated encryption in a matter of hours.

Del Barco said the observation may foster the understanding of quantum tunneling of nanoscale magnetic systems, which could revolutionize the way we understand computation.

"This is very exciting," del Barco said. "When we first observed it, we looked at each other and said, ‘That can't be right.' We did it again and again and we achieved the same result every time."

According to quantum mechanics, small magnetic objects called nanomagnets can exist in two distinct states (i.e. north pole up and north pole down). They can switch their state through a phenomenon called quantum tunneling.

When the nanomagnet switches its poles, the abrupt change in its magnetization can be observed with low-temperature magnetometry techniques used in del Barco's lab. The switch is called quantum tunneling because it looks like a funnel cloud tunneling from one pole to another.

Del Barco published paper shows that two almost independent halves of a new magnetic molecule can tunnel, or switch poles, at once under certain conditions. In the process, they appear to cancel out quantum tunneling.

"It's similar to what can be observed when two rays of light run into interference," del Barco said. "Once they run into the interference you can expect darkness."

Controlling quantum tunneling shifts could help create the quantum logic gates necessary to create quantum computers. It is believed that among the different existing proposals to obtain a practical quantum computer, the spin (magnetic moment) of solid-state devices is the most promising one.

"And this is the case of our molecular magnets," del Barco said. "Of course, this is far from real life yet, but is an important step in the way. We still must do more research and a lot of people are already trying to figure this out, including us. It's absolutely invigorating."

Co-authors of the paper are Christopher Ramsey from UCF, Stephen Hill from the University of Florida and Sonali J. Shah, Christopher C. Beedle and David N. Hendrickson from the University of California at La Jolla.

Del Barco, who is a native of Spain, began teaching at UCF in 2005. He got a Ph.D degree from the University of Barcelona before moving onto New York University where he worked with Andrew Kent, a well-known quantum physicist.

It was the warm weather and the dynamic of UCF that drew him and his family to UCF. Aside from teaching physics and working on research, Del Barco is a published writer. He penned a science fiction novel that has been published in Spain by Editorial Equipo-Sirius. He collaborates with scientists from around the world including researchers in Spain, Hong Kong and across the United States.

####

About University of Central Florida
UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the 6th largest in the nation with more than 48,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy.

For more information, please click here

Contacts:
Enrique del Barco
UCF Physics
407-823-0755

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum nanoscience

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project