Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Porphyrin and carbon nanotube assemblies in polar solvents

January 2nd, 2008

Porphyrin and carbon nanotube assemblies in polar solvents

Abstract:
One of the chief obstacles to exploiting the useful electronic and materials properties of single-wall carbon nanotubes (SWCNTs) is their inclination to form ropes and bundles. Understanding the reaction paths involved in the transition from isolated SWCNTs to bundles in the presence of solvent is basic to controlling the process. Single- and multiple-wall carbon nanotubes (CNTs) in polar, or charged, solvents can also form aggregate assemblies and macromolecular complexes with porphyrin derivatives. This potential is of great interest, as the structural and optical properties of porphyrin derivatives and complexes can be easily engineered, a reality evident not just in the laboratory but also in nature. Indeed, in photosynthesis and other processes, the quantum mechanisms governing charge and energy transfer processes are fundamental to life.

Recent experiments investigating CNTs in amide solvents have led to the debatable conclusion that dispersion and partial debundling can be achieved at low nanotube concentrations with a variety of highly polar solvents possessing high surface tension.1 Among these, N-methylpyrrolidone (NMP) is considered to be the most effective. In particular, it has been postulated that at very low concentrations, the equilibrium (stable) state is a debundled one. Moreover, whether dispersion occurs appears to depend strongly on the method of sample preparation. Taken together, these results suggest that the debundled state is, in fact, not in equilibrium but is metastable (transient though relatively long-lived).

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project