Home > News > Plastic Computer Memory's Secret Is Gold Nanoparticles
December 10th, 2007
Plastic Computer Memory's Secret Is Gold Nanoparticles
Abstract:
Taiwanese researchers say they have developed a simple, durable, and potentially inexpensive nonvolatile memory array made from a mix of plastic and gold nanoparticles. The array is a 16-byte device called an organic nonvolatile bistable memory. The researchers, from National Chung Hsing University (NCHU) and the quasi-governmental Industrial Technology Research Institute (ITRI), presented details of the device today in Washington, D.C., at the 2007 IEEE International Electron Devices Meeting. The Taiwanese team plans to integrate the memory into smart cards.
Engineers have been pursuing organic nonvolatile memories—devices made from plastic and other carbon-based chemicals—because they can potentially be manufactured cheaply using printing processes. But organic memory devices tend to break down in air and under the stress of many read-write cycles. According to Zingway Pei, one of the gold memory's inventors and an assistant professor of electrical engineering at NCHU, recent measurements suggest that it endures more than 1000 switches and retains its data for roughly 10 days, even when exposed to air. Its stability may quickly improve, says Pei. "Theoretically, the memory's retention time can reach 30 days," he says.
Source:
spectrum.ieee.org
| Related News Press |
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||