Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breast cancer treatment heats up

Abstract:
Attaching nanoscale bioprobes to cancer cells—and heating them—kills malignant cells, according to pre-clinical, developmental research in the march Journal of Nuclear Medicine.

Breast cancer treatment heats up

Reston, VA | Posted on March 6th, 2007

In the March Journal of Nuclear Medicine, researchers demonstrate that miniscule bioprobes could be produced and used with molecularly targeted therapeutic heat to kill malignant breast cancer cells—without damaging nearby healthy tissue.

While many researchers have studied using heat in treating cancer, "the inability to deposit effective doses of heat in a tumor without applying similar heat to nearby normal tissue has prevented widespread clinical use," said Sally J. DeNardo, professor of internal medicine and radiology with the School of Medicine at the University of California Davis in Sacramento. "Our animal study, which combined the future-oriented sciences of nanotechnology and molecular imaging, shows that a method for delivering thermal ablation—removing or destroying cancer cells by using heat—is feasible," added the co-director of the university's radiodiagnosis and therapy section. "This exciting study—combining radiolabeled antibodies with nanoparticles or bioprobes—provides a new approach to direct thermal ablation specifically to tumor cells," she noted. DeNardo stressed that this heat treatment is in the preclinical, developmental stage, having been used only in lab mice; additional tests will need to be performed with cancer patients.

Such studies are important, explained DeNardo, indicating that breast cancer is the most common cancer among women (besides skin cancer). Statistics show that a woman has a 1 in 8 chance of developing breast cancer during her life. This year, about 200,000 women in the United States will be diagnosed with invasive breast cancer, and nearly 40,000 will die from the disease.

Scientists from UC Davis and Triton BioSystems in Boston, Mass., injected trillions of magnetic iron-containing bioprobes into the bloodstream of a lab mouse bearing a human cancer tumor. The magnetic iron nanoprobes—more than 10,000 of which can fit on the end of a straight pin—are concealed in polymers and sugars, making them nearly invisible to the body's immune system. Antibodies (joined with a radioactive substance) on these probes latched onto receptors that are on the surface of tumor cells. The heating of the probes can be activated and controlled by the use of a magnetic field from outside the body. By applying an alternating magnetic field to the tumor region, the magnetic spheres changed polarity thousands of times per second and created heat. This heat weakened—and destroyed—cancer cells. The bioprobes cooled off as soon as the alternating magnetic field was turned off and then passed out of the body. This process is described in detail in the JNM article, "Thermal Dosimetry Predictive for Efficacy of 111In-ChL6 Nanoparticle AMF-Induced Thermoablative Therapy for Human Breast Cancer in Mice."

"Using heat to kill cancer cells isn't a new concept. The biggest problems with using heat are how to apply it to the tumor cell alone, how to determine its effectiveness and how to predict the amount needed," said DeNardo. "By using heat—along with nanoparticles and a radiolabeled antibody—our quantitative imaging directed—and made safer—the application and development of therapy for cancer," she added. "This technique could join other cancer therapies, especially for cancers that are hard to treat now, such as breast cancer and metastatic melanoma," indicated DeNardo.

"Thermal Dosimetry Predictive for Efficacy of 111In-ChL6 Nanoparticle AMF-Induced Thermoablative Therapy for Human Breast Cancer in Mice" appears in the March issue of the Journal of Nuclear Medicine, which is published by SNM, the leading international molecular imaging and nuclear medicine society. Co-authors include Gerald L. DeNardo, Arutselvan Natarajan, Laird A. Miers and Grete N. Adamson, all with the School of Medicine, UC Davis, Sacramento; Allan R. Foreman and Robert Ivkov, both with Triton BioSystems Inc., Chelmsford, Mass.; and Cordula Gruettner, Micromod Partikeltechnologie, GmbH, Rostock-Warnemuende, Germany.

Further information

To obtain a copy of this article, please contact Maryann Verrillo by phone at +1 (703) 652-6773 or send an e-mail to Current and past issues of the Journal of Nuclear Medicine can be found online at jnm.snmjournals.org. Print copies can be obtained by contacting the SNM Service Center, 1850 Samuel Morse Drive, Reston, VA 20190-5316; phone +1 (800) 513-6853; e-mail fax +1 (703) 708-9015. A subscription to the journal is an SNM member benefit.

####

For more information, please click here

Contacts:
Maryann Verrillo
+1 (703) 652-6773

Copyright © Journal of Nuclear Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project