Home > News > New potent nanoassemblies to fight cancer and HIV
October 19th, 2006
New potent nanoassemblies to fight cancer and HIV
Abstract:
Professor Patrick Couvreur, director of the Physico-chimie, Pharmacotechnie et Biopharmacie department at the Université de Paris-Sud, and a team of researchers from the Università degli Studi di Torino/Italy and the Laboratoire de Neurovirologie in Fontenay-aux-Roses/France, have discovered that the linkage of nucleoside analogues to squalenic acid ("squalenization"), the acyclic isoprenoid chain of squalene, leads to squalenic amphiphilic prodrugs which self-organize in water as nanoassemblies of 100-300 nm, irrespective of the nucleoside analogue used and the location of covalent linkage.
Source:
nanowerk.com
| Related News Press |
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||