Home > News > Nanostructured Colloidal Systems Inspired by Nature
April 10th, 2006
Nanostructured Colloidal Systems Inspired by Nature
Abstract:
University of Melbourne researchers' work on bioinspired nanoscale colloidal systems is an example of the significant interest that the design and fabrication of nanostructured colloidal materials has created among scientists. Professor Frank Caruso, who is Director of the University of Melbourne’s Centre for Nanoscience and Nanotechnology and leads the Nanostructured Interfaces & Materials Group (NIMS) in the Department of Chemical and Biomolecular Engineering, and his group have pioneered the modification of colloidal particles with ultrathin polymer coatings.
Source:
newswiretoday.com
| Related Links |
Centre for Nanoscience and Nanotechnology
Nanostructured Interfaces & Materials Group
| Related News Press |
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||