Home > News > Entanglement heats up
February 27th, 2006
Entanglement heats up
Abstract:
"Entanglement" could occur at any temperature and not just in systems cooled to near zero according to new calculations by a team of physicists in the UK, Austria and Portugal. Vlatko Vedral of the University of Leeds and colleagues at the universities of Porto and Vienna have found that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror, no matter how hot the mirror is. The result is unexpected because hot objects are usually thought of being classical. The finding suggests that macroscopic entanglement is not as difficult to create as previously believed and could have implications for making room-temperature quantum computers in the future.
Source:
physicsweb.org
| Related News Press |
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Quantum Computing
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||