Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotech research dominates UH contest

Abstract:
Three Students Take Top Honors in Student Superconductivity Symposium

From communications to biosensors, nanotech research dominates UH contest

Houston, TX | Posted on January 23, 2006

Fostering multidisciplinary research with projects ranging from those that impact the communications field to improving the fabrication of integrated circuitry used in data storage and biosensors, the 30th Semiannual Texas Center for Superconductivity at the University of Houston (TcSUH) Student Symposium recently showcased original research from UH science and engineering students.

Three students won top honors, including two from the College of Natural Sciences and Mathematics and one from the Cullen College of Engineering. First place went to Jason Shulman, a doctoral student in physics; second place went to Barry Craver, a doctoral student in electrical engineering; and third place went to Girish Nathan, a doctoral student in physics. Competitors gave 15-minute research presentations, followed by a brief question-and-answer period. A faculty panel judged each presenter on originality and quality of research, quality of presentation and skillful use of visual aids.

“I have always been interested in science and, in particular, the fundamental laws of nature,” first-place winner Shulman said, whose project leader is UH Professor of Physics and T.L.L. Temple Chair of Science Paul C.W. Chu. “Physics was a natural choice for my field of study. My research focuses on the dielectric properties of nanosystems. We have observed several important features that only exist in the nanoscale. These novel properties have the potential to impact fields ranging from communications to charged carrier gases.”

In second place, Craver, whose project leaders are Professor of Electrical Engineering John Wolfe and Associate Professor of Electrical Engineering Dmitri Litvinov, said, “I am fascinated by the complexity of fabricating integrated circuitry at nanometer dimensions. Recently, we’ve developed atom beam lithography, which uses a beam of energetic atoms to print nanometer-sized features. With this new technique we will fabricate extremely small magnetic devices for applications in data storage and ultra-high sensitivity magnetic and biological sensors.”

Third-place winner Nathan, whose project leader is Professor and Associate Chairman of Physics Gemunu Gunaratne, is also a physics student.

“From the time I was a child, the patterns I observed held a certain fascination for me,” he said. “I remember wondering about how and why they were formed. A childhood dream has been realized in a sense, since I work on pattern formation and on trying to understand why patterns really form, which is where a lot of my scientific curiosity began.”

TcSUH is internationally recognized for its multidisciplinary research and development of high-temperature superconductors (HTS) and related materials. (See related release here.)

####
Media Contact:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)
lkmerkl@uh.edu

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Memory Technology

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Tools

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project