Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanobubbles cause metal fatigue

May 15th, 2005

Nanobubbles cause metal fatigue

Abstract:
Metals with nanoscale grain sizes can be stronger than ordinary metals, but they may also be highly susceptible to fatigue: the gradual growth of cracks under repeated cycles of stress and release. Computer simulations of the atomic-scale processes involved in the cracking of a nanocrystalline metal have now helped to clarify the reasons for this Achilles' heel.

The key problem that Diana Farkas and her colleagues at Virginia Polytechnic Institute and State University in Blacksburg have overcome in conducting their investigation is how to bridge the different scales at which the issue of cracking must be considered. Although the basic process by which a crack propagates through a metal involves sliding of individual planes of atoms in the crystalline material, the big picture becomes apparent only when one draws back to the scale of many tens of nanometres — which encompasses enormous numbers of atoms.

Source:
* Nature

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Virginia Polytechnic Institute

Related News Press

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project