Home > News > Printable Silicon For Ultrahigh Performance Flexible Electronics
June 24th, 2004
Printable Silicon For Ultrahigh Performance Flexible Electronics
Abstract:
By carving specks of single crystal silicon from a bulk wafer and casting them onto sheets of plastic, scientists at the University of Illinois at Urbana-Champaign have demonstrated a route to ultrahigh performance, mechanically flexible thin-film transistors. The process could enable new applications in consumer electronics - such as inexpensive wall-to-wall displays and intelligent but disposable radio frequency identification tags - and could even be used in applications that require significant computing power.
Source:
SpaceDaily
| Related News Press |
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||