Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments

Abstract:
Polyimide (PI) composite films are widely used on the external surfaces of spacecraft to protect them from the adverse environments of low Earth orbit (LEO) due to their outstanding comprehensive performance. However, current PI composite films have inadequate mechanical properties and atomic oxygen (AO) resistance.

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments

Hefei, China | Posted on December 3rd, 2021

In a study published in Advanced Materials, a research team led by Prof. YU Shuhong from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences proposed a unique double-layer nacre-inspired structural design strategy, and fabricated a new PI-based nanocomposite film with greatly enhanced mechanical properties and AO resistance.

Inspired by the brick-and-mortar microstructure of natural nacre, researchers assembled mica nanosheets and PI into a double-layer nacre-inspired structure with a much higher density of mica in the top layer, which was achieved via a straightforward spray assisted assembly followed by a thermo-curing process.

By optimizing the component proportions and top layer thickness, the mechanical properties of the double-layer PI-Mica film were significantly enhanced. The tensile strength, Young’s modulus, and surface hardness of the double-layer film were 45%, 100%, and 68% higher than those of pure PI films, respectively.

By virtue of the unique double-layer nacre-inspired structure and the intrinsic advantages of mica nanosheets, the obtained double-layer PI-Mica film achieved much better AO resistance, UV aging resistance (313 nm), and high-temperature stability (380 ℃) than pure PI film. In addition, both AO fluence and erosion yield characteristics of the double-layer PI-Mica film are superior to previously reported PI-based composites. Thus, this double-layer PI-Mica film may serve as a new type of aerospace protective material, replacing existing PI-based composite films for LEO applications.

The unique double-layer nacre-inspired structural design provides a promising avenue for future design and fabrication of other high-performance bioinspired nanocomposites for diverse applications.

####

For more information, please click here

Contacts:
Jane fan
University of Science and Technology of China

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Materials/Metamaterials

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Aerospace/Space

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project