Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers find antioxidants improve nanoscale visualization of polymers

Adding antioxidants can push the resolution limit of polymer electron microscopy to reveal a structure smaller in scale (blue) compared to the structure previously observed (pink) in this false-color image.

CREDIT
Brooke Kuei, Penn State
Adding antioxidants can push the resolution limit of polymer electron microscopy to reveal a structure smaller in scale (blue) compared to the structure previously observed (pink) in this false-color image. CREDIT Brooke Kuei, Penn State

Abstract:
Reactive molecules, such as free radicals, can be produced in the body after exposure to certain environments or substances and go on to cause cell damage. Antioxidants can minimize this damage by interacting with the radicals before they affect cells.

Engineers find antioxidants improve nanoscale visualization of polymers

University Park, PA | Posted on January 8th, 2021

Led by Enrique Gomez, professor of chemical engineering and materials science and engineering, Penn State researchers have applied this concept to prevent imaging damage to conducting polymers that comprise soft electronic devices, such as organic solar cells, organic transistors, bioelectronic devices and flexible electronics. The researchers published their findings in Nature Communications today (Jan. 8).

According to Gomez, visualizing the structures of conducting polymers is crucial to further develop these materials and enable commercialization of soft electronic devices -- but the actual imaging can cause damage that limits what researchers can see and understand.

"It turns out antioxidants, like those you'd find in berries, aren't just good for you but are also good for polymer microscopy," Gomez said.

Polymers can only be imaged to a certain point with high-resolution transmission electron microscopy (HRTEM) because the bombardment of electrons used to form images breaks the sample apart.

The researchers examined this damage with the goal of identifying its fundamental cause. They found the HRTEM electron beam generated free radicals that degraded the sample's molecular structure. Introducing butylated hydroxytoluene, an antioxidant often used as a food additive, to the polymer sample prevented this damage and removed another restriction on imaging conditions -- temperature.

"Until now, the main strategy for minimizing polymer damage has been imaging at very low temperatures," said paper co-author Brooke Kuei, who earned her doctorate in materials science and engineering in the Penn State College of Earth and Mineral Sciences in August. "Our work demonstrates that the beam damage can be minimized with the addition of antioxidants at room temperature."

Although the researchers did not quantitatively test the resolution limits that resulted from this method, they were able to image the polymer at a resolution of 3.6 angstroms, an improvement from their previous resolution of 16 angstroms. For comparison, an angstrom is about one-millionth the breadth of a human hair.

Polymers are made up of molecular chains lying on top of each other. The previously imaged distance of 16 angstroms was the distance between chains, but imaging at 3.6 angstroms allowed researchers to visualize patterns of close contacts along the chains. For the electrically conductive polymer examined in this study, researchers could follow the direction along which electrons travel. According to Gomez, this allows them to better understand the conductive structures in polymers.

"The key to this advancement in polymer microscopy was understanding the fundamentals of how the damage occurs in these polymers," Gomez said. "This technological advance will hopefully help lead to the next generation of organic polymers."

###

The National Science Foundation and Kuei's graduate fellowship through the U.S. Department of Energy Office of Science supported this work.

####

For more information, please click here

Contacts:
Megan Lakatos

814-865-5544

@penn_state

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Organic Electronics

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

University of Houston research allows for 3D printing of 'organic electronics' Micro-scale organic electronics for use in bioelectronics via multiphoton 3D printers June 24th, 2022

Flexible Electronics

Disposable electronics on a simple sheet of paper October 7th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

University of Houston research allows for 3D printing of 'organic electronics' Micro-scale organic electronics for use in bioelectronics via multiphoton 3D printers June 24th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Solar/Photovoltaic

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project