Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers find antioxidants improve nanoscale visualization of polymers

Adding antioxidants can push the resolution limit of polymer electron microscopy to reveal a structure smaller in scale (blue) compared to the structure previously observed (pink) in this false-color image.

CREDIT
Brooke Kuei, Penn State
Adding antioxidants can push the resolution limit of polymer electron microscopy to reveal a structure smaller in scale (blue) compared to the structure previously observed (pink) in this false-color image. CREDIT Brooke Kuei, Penn State

Abstract:
Reactive molecules, such as free radicals, can be produced in the body after exposure to certain environments or substances and go on to cause cell damage. Antioxidants can minimize this damage by interacting with the radicals before they affect cells.

Engineers find antioxidants improve nanoscale visualization of polymers

University Park, PA | Posted on January 8th, 2021

Led by Enrique Gomez, professor of chemical engineering and materials science and engineering, Penn State researchers have applied this concept to prevent imaging damage to conducting polymers that comprise soft electronic devices, such as organic solar cells, organic transistors, bioelectronic devices and flexible electronics. The researchers published their findings in Nature Communications today (Jan. 8).

According to Gomez, visualizing the structures of conducting polymers is crucial to further develop these materials and enable commercialization of soft electronic devices -- but the actual imaging can cause damage that limits what researchers can see and understand.

"It turns out antioxidants, like those you'd find in berries, aren't just good for you but are also good for polymer microscopy," Gomez said.

Polymers can only be imaged to a certain point with high-resolution transmission electron microscopy (HRTEM) because the bombardment of electrons used to form images breaks the sample apart.

The researchers examined this damage with the goal of identifying its fundamental cause. They found the HRTEM electron beam generated free radicals that degraded the sample's molecular structure. Introducing butylated hydroxytoluene, an antioxidant often used as a food additive, to the polymer sample prevented this damage and removed another restriction on imaging conditions -- temperature.

"Until now, the main strategy for minimizing polymer damage has been imaging at very low temperatures," said paper co-author Brooke Kuei, who earned her doctorate in materials science and engineering in the Penn State College of Earth and Mineral Sciences in August. "Our work demonstrates that the beam damage can be minimized with the addition of antioxidants at room temperature."

Although the researchers did not quantitatively test the resolution limits that resulted from this method, they were able to image the polymer at a resolution of 3.6 angstroms, an improvement from their previous resolution of 16 angstroms. For comparison, an angstrom is about one-millionth the breadth of a human hair.

Polymers are made up of molecular chains lying on top of each other. The previously imaged distance of 16 angstroms was the distance between chains, but imaging at 3.6 angstroms allowed researchers to visualize patterns of close contacts along the chains. For the electrically conductive polymer examined in this study, researchers could follow the direction along which electrons travel. According to Gomez, this allows them to better understand the conductive structures in polymers.

"The key to this advancement in polymer microscopy was understanding the fundamentals of how the damage occurs in these polymers," Gomez said. "This technological advance will hopefully help lead to the next generation of organic polymers."

###

The National Science Foundation and Kuei's graduate fellowship through the U.S. Department of Energy Office of Science supported this work.

####

For more information, please click here

Contacts:
Megan Lakatos

814-865-5544

@penn_state

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

Flexible Electronics

Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020

Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices October 8th, 2020

Organic Electronics

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices October 8th, 2020

InnovationLab and Heidelberg collaborate on industrial production of printed and organic sensors: Firms achieve volume and price breakthroughs in manufacture of printed sensors August 19th, 2020

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes March 30th, 2020

Govt.-Legislation/Regulation/Funding/Policy

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Possible Futures

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

Chip Technology

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Discoveries

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

Announcements

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

Solar/Photovoltaic

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project