Home > Press > Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies
![]() |
New diamond-based nano-microscope opens up potential for 2D materials. CREDIT David A. Broadway |
Abstract:
Australian researchers and their colleagues from Russia and China have shown that it is possible to study the magnetic properties of ultrathin materials directly, via a new microscopy technique that opens the door to the discovery of more two-dimensional (2D) magnetic materials, with all sorts of potential applications.
Published in the journal Advanced Materials, the findings are significant because current techniques used to characterise normal (three-dimensional) magnets don't work on 2D materials such as graphene due to their extremely small size - a few atom thick.
"So far there has been no way to tell exactly how strongly magnetic a 2D material was," said Dr Jean-Philippe Tetienne from the University of Melbourne School of Physics and Centre for Quantum Computation and Communication Technology.
"That is, if you were to place the 2D material on your fridge's door like a regular fridge magnet, how strongly it gets stuck onto it. This is the most important property of a magnet."
To address the problem, the team, led by Professor Lloyd Hollenberg, employed a widefield nitrogen-vacancy microscope, a tool they recently developed that has the necessary sensitivity and spatial resolution to measure the strength of 2D material.
"In essence, the technique works by bringing tiny magnetic sensors (so-called nitrogen-vacancy centres, which are atomic defects in a piece of diamond) extremely close to the 2D material in order to sense its magnetic field," Professor Hollenberg explained.
To test the technique, the scientists chose to study vanadium triiodide (VI3) as large 3D chunks of VI3 were already known to be strongly magnetic.
Using their special microscope, they have now shown that 2D sheets of VI3 are also magnetic but about twice as weak as in the 3D form. In other words, it would be twice as easy to get them off the fridge's door.
"This was a bit of a surprise, and we are currently trying to understand why the magnetisation is weaker in 2D, which will be important for applications," Dr Tetienne said.
Professor Artem Oganov of Skolkovo Institute of Science and Technology (Skoltech) in Moscow said the findings have the potential to trigger new technology.
"Just a few years ago, scientists doubted that two-dimensional-magnets are possible at all. With the discovery of two-dimensional ferromagnetic VI3, a new exciting class of materials emerged. New classes of material always mean that new technologies will appear, both for studying such materials and harnessing their properties."
The international team now plan to use their microscope to study other 2D magnetic materials as well as more complex structures, including those that are expected to play a key role in future energy-efficient electronics.
###
Other organizations involved in the research include University of Basel, RMIT University, Nanjing University of Posts and Telecommunications, Moscow Institute of Physics and Technology, Northwestern Polytechnical University, and Renmin University of China.
####
For more information, please click here
Contacts:
Lito Vilisoni Wilson
61-466-867-909
@unimelb
Copyright © University of Melbourne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
2 Dimensional Materials
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Imaging
How photoblueing disturbs microscopy February 26th, 2021
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021
Magnetism
Scientists manipulate magnets at the atomic scale February 12th, 2021
Govt.-Legislation/Regulation/Funding/Policy
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
Possible Futures
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Chip Technology
CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Discoveries
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Materials/Metamaterials
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Announcements
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Tools
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021
CEA Is the First Research Center to Acquire A Cryogenic Prober for Testing Quantum Bits February 10th, 2021
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |