Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT

Super-resolved DNA-PAINT allows the detection of the ultrastructure of cells, such as microtubules, which are part of the cytoskeleton. (Picture: Florian Schueder, MPI of Biochemistry)
Super-resolved DNA-PAINT allows the detection of the ultrastructure of cells, such as microtubules, which are part of the cytoskeleton. (Picture: Florian Schueder, MPI of Biochemistry)

Abstract:
Recent advances in fluorescence microscopy allow researchers to study biological processes below the classical diffraction limit of light. Ralf Jungmann, Professor for Experimental Physics at Ludwig-Maximilians-Universität (LMU) in Munich and research group leader at the Max Planck Institute of Biochemistry, and colleagues developed DNA-PAINT, a variant of these so-called super-resolution approaches. "DNA-PAINT yields super-resolved images using comparably simple microscopes", says Jungmann. The technique uses short, dye-labeled DNA strands that transiently interact with their target-bound complements in order to create the necessary "blinking" for super-resolution reconstruction. This approach enables sub-10-nm spatial resolution and easy multiplexing through the use of orthogonal DNA sequences for different targets.

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT

Munich, Germany | Posted on October 11th, 2019

"During the last years, we have optimized DNA-PAINT in a few key areas. However, one major limitation still persists, which prevents DNA-PAINT to be applied to biomedically relevant high-throughput studies: The rather slow image acquisition speed", says Jungmann. Classical DNA-PAINT experiments can easily last from tens of minutes to hours. "We have checked carefully why this takes so long", says Florian Schüder, lead author of the current study and co-worker in Jungmann's group. "Optimized DNA sequence design and improved image buffer conditions allowed us to speed things up by an order of magnitude", adds Schüder.

From the DNA origami breadboard to cells

In order to quantitatively assess the improvements to DNA-PAINT, the researchers used DNA origami structures, which are self-assembled, nanometer-sized DNA objects autonomously folding into predefined shapes. These structures can be used to arrange DNA-PAINT binding sites spaced precisely at e.g. 5-nm distances. This allowed the researchers to evaluate the speed improvement in DNA-PAINT using well-defined conditions. In a next step, the team applied the speed improvement also to a cellular system. For this, microtubules, which are part of the cytoskeleton, were visualized at super-resolution, 10-times faster than before. "The increased imaging speed allowed us to acquire an area of one square millimeter at a resolution of 20 nm in only 8 hours. This would have taken us almost four days before", explains Schüder.

Ralf Jungmann concludes: "With these current improvements, which allow us to image 10-times faster, we bring DNA-PAINT to the next level. It should now be feasible to apply it to high-throughput studies with biological and biomedical relevance e.g. in diagnostic applications."

####

For more information, please click here

Contacts:
Kathrin Bilgeri

49-892-180-3423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Imaging

Extracting hidden quantum information from a light source October 25th, 2019

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Possible Futures

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Discoveries

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Announcements

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Tools

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Picosun expands selection of biocompatible ALD materials for medical applications November 4th, 2019

Extracting hidden quantum information from a light source October 25th, 2019

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Nanobiotechnology

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Nanoparticle orientation offers a way to enhance drug delivery: Coating particles with 'right-handed' molecules could help them penetrate cancer cells more easily November 5th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project