Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Trapping and moving tiny particles using light

Abstract:
Researchers at the Centre for Nano Science and Engineering (CeNSE), IISc, have developed a technique to trap and move nano-sized particles in a fluidic medium using only light.

Trapping and moving tiny particles using light

Bengaluru, India | Posted on September 24th, 2019

In a recent study, PhD student Souvik Ghosh along with Prof. Ambarish Ghosh, at CeNSE have demonstrated a novel nanotweezer technology using focused laser beam to trap and manoeuvre a nano-sized silver disk, which in turn can attract and ensnare nanoparticles when light is shined on it.

The study was published in Nature Communications.

Tools that trap and manipulate microscopic objects using light — a Nobel Prize-winning advancement — have led to significant breakthroughs in diverse fields, from atomic physics to biology. These “optical tweezers”, however, are not efficient to trap particles that are nano-sized. This could recently be overcome with the invention of “plasmonic tweezers”, which can trap much smaller particles, such as viruses or quantum dots, at lower light intensities. They use metallic nanostructures such as gold or silver that generate a strong electromagnetic field around themselves when light hits them, which attracts and traps nanoparticles.

Plasmonic tweezers, however, have a limitation: unlike optical tweezers they are typically fixed at a spot and are only able to trap particles close to them. As a result, dynamic control over nanoscale objects in fluids remains challenging. In an earlier study published in Science Robotics, Ghosh and Ghosh managed to transport nanoscale cargoes with plasmonic tweezers integrated to magnetic nano-robots. However, due to this hybrid approach, those tweezers were not applicable for certain type of colloids such as magnetic nanoparticles. Additionally, the spatial resolution of the manipulation experiments was limited to the Brownian fluctuation of the nano-robot itself.



In the present study, the same team have come up with an advanced nanomanipulation technique that works on optical forces alone and therefore versatile in nature. The researchers have shown manipulation with magnetic colloids and even in biological buffer solution solutions. In their experiment, Ghosh et al have used a nanodisk made of silver as a plasmonic tweezer, and manoeuvred it using a focused laser beam that acted as the optical tweezer.



Earlier attempts to trap metallic nanoparticles in an optical tweezer needed high-intensity beams to hold the disk in place inside the colloidal medium. To overcome this challenge, the team fixed the silver nanodisk on top of a glass microrod to reduce its random movement. A low-intensity laser beam was then sufficient to trap and move the disk-rod hybrid inside the colloidal medium, capturing and carrying nanoparticles as small as 40 nm, along the way.

“The approach combines the strengths of two powerful tools called optical and plasmonic tweezers” says Souvik Ghosh. This unique “tweezer in a tweezer” approach could be used to precisely capture, transport and release particles such as nano-diamonds or quantum dots. As it uses low-intensity light, the approach would also enable non-invasive manipulation of fragile biological specimens such as bacteria, viruses and proteins, the researchers say.

“What we have achieved is the capability of manipulating very, very small particles, with much lower light intensity. This is important for things that can be damaged, such as living cells, or even non-living things where high-intensity beams can heat up the material,” says Ambarish Ghosh, an associate professor at CeNSE, IISc.



The demonstrated technology also showed manipulation of a collection of particles within the same colloidal medium. In addition, the researchers were able to simultaneously manipulate individual nanoparticles at different locations of the fluid and release them independently at desired places inside the fluidic chamber, a functionality that was not demonstrated before in the context of optical nanomanipulation.

The simplicity of the approach would allow the plasmonic tweezers to be integrated with advanced optical tweezer systems for large-scale manipulation and assembly of nanomaterials such as fluorescent nanodiamonds, quantum dot, nanocrystals etc. in standard lab-on-chip devices , they suggest.

####

For more information, please click here

Contacts:
Ambarish Ghosh
Associate Professor
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)

Ph: 080-2293 2442

Souvik Ghosh
PhD student
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)

Copyright © Indian Institute of Science (IISc)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

REFERENCE: All optical dynamic nanomanipulation with active colloidal tweezers, published in Nature Communications, September 2019:

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Lab-on-a-chip

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Nanofabrication

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C February 28th, 2020

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Tools

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Quantum Dots/Rods

FSU researchers discover new structure for promising class of materials April 24th, 2020

Development of new photovoltaic commercialization technology: The cause for efficiency degradation in an actual operating environment has been identified, with proposal of material processing method for improving performance stability April 10th, 2020

Water-free way to make MXenes could mean new uses for the promising nanomaterials: Discovery by Drexel researchers could open new application for MXene materials March 13th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

Photonics/Optics/Lasers

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Light in the tunnel March 26th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project