Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Trapping and moving tiny particles using light

Abstract:
Researchers at the Centre for Nano Science and Engineering (CeNSE), IISc, have developed a technique to trap and move nano-sized particles in a fluidic medium using only light.

Trapping and moving tiny particles using light

Bengaluru, India | Posted on September 24th, 2019

In a recent study, PhD student Souvik Ghosh along with Prof. Ambarish Ghosh, at CeNSE have demonstrated a novel nanotweezer technology using focused laser beam to trap and manoeuvre a nano-sized silver disk, which in turn can attract and ensnare nanoparticles when light is shined on it.

The study was published in Nature Communications.

Tools that trap and manipulate microscopic objects using light — a Nobel Prize-winning advancement — have led to significant breakthroughs in diverse fields, from atomic physics to biology. These “optical tweezers”, however, are not efficient to trap particles that are nano-sized. This could recently be overcome with the invention of “plasmonic tweezers”, which can trap much smaller particles, such as viruses or quantum dots, at lower light intensities. They use metallic nanostructures such as gold or silver that generate a strong electromagnetic field around themselves when light hits them, which attracts and traps nanoparticles.

Plasmonic tweezers, however, have a limitation: unlike optical tweezers they are typically fixed at a spot and are only able to trap particles close to them. As a result, dynamic control over nanoscale objects in fluids remains challenging. In an earlier study published in Science Robotics, Ghosh and Ghosh managed to transport nanoscale cargoes with plasmonic tweezers integrated to magnetic nano-robots. However, due to this hybrid approach, those tweezers were not applicable for certain type of colloids such as magnetic nanoparticles. Additionally, the spatial resolution of the manipulation experiments was limited to the Brownian fluctuation of the nano-robot itself.



In the present study, the same team have come up with an advanced nanomanipulation technique that works on optical forces alone and therefore versatile in nature. The researchers have shown manipulation with magnetic colloids and even in biological buffer solution solutions. In their experiment, Ghosh et al have used a nanodisk made of silver as a plasmonic tweezer, and manoeuvred it using a focused laser beam that acted as the optical tweezer.



Earlier attempts to trap metallic nanoparticles in an optical tweezer needed high-intensity beams to hold the disk in place inside the colloidal medium. To overcome this challenge, the team fixed the silver nanodisk on top of a glass microrod to reduce its random movement. A low-intensity laser beam was then sufficient to trap and move the disk-rod hybrid inside the colloidal medium, capturing and carrying nanoparticles as small as 40 nm, along the way.

“The approach combines the strengths of two powerful tools called optical and plasmonic tweezers” says Souvik Ghosh. This unique “tweezer in a tweezer” approach could be used to precisely capture, transport and release particles such as nano-diamonds or quantum dots. As it uses low-intensity light, the approach would also enable non-invasive manipulation of fragile biological specimens such as bacteria, viruses and proteins, the researchers say.

“What we have achieved is the capability of manipulating very, very small particles, with much lower light intensity. This is important for things that can be damaged, such as living cells, or even non-living things where high-intensity beams can heat up the material,” says Ambarish Ghosh, an associate professor at CeNSE, IISc.



The demonstrated technology also showed manipulation of a collection of particles within the same colloidal medium. In addition, the researchers were able to simultaneously manipulate individual nanoparticles at different locations of the fluid and release them independently at desired places inside the fluidic chamber, a functionality that was not demonstrated before in the context of optical nanomanipulation.

The simplicity of the approach would allow the plasmonic tweezers to be integrated with advanced optical tweezer systems for large-scale manipulation and assembly of nanomaterials such as fluorescent nanodiamonds, quantum dot, nanocrystals etc. in standard lab-on-chip devices , they suggest.

####

For more information, please click here

Contacts:
Ambarish Ghosh
Associate Professor
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)

Ph: 080-2293 2442

Souvik Ghosh
PhD student
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)

Copyright © Indian Institute of Science (IISc)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

REFERENCE: All optical dynamic nanomanipulation with active colloidal tweezers, published in Nature Communications, September 2019:

Related News Press

News and information

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Lab-on-a-chip

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Nanofabrication

CCNY physicists score double hit in LED research September 27th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Possible Futures

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Discoveries

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Announcements

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Tools

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Picosun expands selection of biocompatible ALD materials for medical applications November 4th, 2019

Extracting hidden quantum information from a light source October 25th, 2019

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Quantum Dots/Rods

Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019

Machine learning at the quantum lab September 27th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Photonics/Optics/Lasers

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project