Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials

Abstract:
"All matter consists of positively charged atomic nuclei and negatively charged electrons," explains Professor Dr.-Ing. Rolf Findeisen from the Institute of Automation Technology at the University of Magdeburg. "These generate electrical potentials. Using conventional methods, until now it has been barely possible to measure these very weak fields, which are responsible for many of the characteristics and functionalities of materials."

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials

Magdeburg, Germany | Posted on July 12th, 2019

With the newly developed Scanning Quantum Dot Microscopy, a single molecule, known as a quantum dot, is mounted on the tip of the needle of a scanning force microscope. This tip travels, like the needle of a record player, over the sample with the molecule at temperatures close to absolute zero and thus, step by step creates a coherent representation of the surface.

Together with his doctoral student, Michael Maiworm, Professor Rolf Findeisen developed a controller for the innovative microscope method - an algorithm that controls the scanning process. This makes the accurate, but until now extremely long-winded measurement of potentials at molecular resolution possible in just a few minutes. "With the new controller we can now easily scan the entire surface of a molecule, as with a normal scanning force microscope," says Christian Wagner from the Jülich Research Center. This enables us to produce high-resolution images of the potential, which previously appeared unattainable.

"There are many possible uses for this new, unusually precise and fast microscopy technique," continues Michael Maiworm, who largely developed the controller as part of his dissertation supervised by Professor Findeisen. "They range from fundamental physical questions to semiconductor electronics - where even a single atom can be critical for functionality - and molecular chemical reactors to the characterization of biomolecules such as our DNA or biological surfaces."

The work is a part of the cooperation between Magdeburg and Jülich, which examines the targeted and automated manipulation of objects at nano level. In this connection the molecular tip has a dual function: it is simultaneously both a measuring probe and a tool. This opens up the possibility of, in future, being able to create nanostructures via 3D printing. It is conceivable, for example, that it might be possible to produce electrical circuits consisting of individual molecules or sensors of molecular dimension and resolution.

####

For more information, please click here

Contacts:
Dr.-Ing. Rolf Findeisen

49-391-675-8708

Copyright © University of Magdeburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original Publication:

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Imaging

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Closing the terahertz gap: Tiny laser is an important step toward new sensors July 25th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Nanofabrication

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

3D & 4D printing/Additive-manufacturing

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Chip Technology

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Tools

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Cellulose nanofibers to improve the sensitivity of lateral flow tests August 7th, 2019

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Quantum Dots/Rods

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project