Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Shaking hands with human or robot? Nanotubes make them alike as never before

Abstract:
Will the future of humanity resemble the robot-filled societies seen in science fiction? In fact, human-like robots are much closer to becoming a reality than you may think. Thanks to nanotube-based sensors, electronic skin can detect touch just like a human.

Shaking hands with human or robot? Nanotubes make them alike as never before

Luxembourg | Posted on June 6th, 2019

Imagine a human-like robot in your daily life. It interacts with your children and pets, serves you at the supermarket, and even, if necessary, extracts your tooth or performs a more complex operation. It is now possible, as scientists have finally found the answer on how to give robots human-like tactile senses. While they cannot feel as we do, robots are now able to detect their environment almost as well as a human.



Osaka Prefecture University (OPU) is already well known as the birthplace for robots that are the most human-like in appearance, Erica and Ibuki. Another research group led by Prof. Kuniharu Takei has accepted a challenge that is probably even more ambitious: to make electronic skin that senses in the same way as a human’s.

Without any thought, we can gently stroke a puppy or firmly shake someone’s hand, but today’s robots are unable to distinguish these types of touch. The absence of simultaneous monitoring of tactile pressure and temperature change is the main obstacle, according to Kuniharu Takei, a professor in OPU’s Department of Physics and Electronics and the head of the research group. Creating elastic, flexible soft robotic hands was the barrier for the integration of multiple sensors. OPU researchers have for the first time successfully integrated multiple nanotube-based tactile and temperature sensors into a pneumatic balloon-based soft robotic hand without sensitivity to bending of the structure of the hand.

An array of four tactile sensors and one temperature sensor based on highly conductive single wall carbon nanotubes can monitor sliding or slipping movements of an object from a robotic hand by detecting the time delay of the tactile force. This provides real-time feedback so that the robotic hand can adjust the actuation force to prevent dropping the object.



Furthermore, a robotic hand with nanotube-based sensors can detect the tactile force and temperature generated by a human hand, while each sensor measures the tactile force generated by a human finger independently. These functionalities give the soft robotic hand the capability to imitate human fingers and shake hands with a human.



The sensing mechanism for tactile sensors utilizes the contact resistance change between silver thread and paper with a flexible, conductive single wall carbon nanotube layer. For temperature sensing, a mixture of single wall carbon nanotubes and tin (IV) oxide (SnO2) enhances the temperature sensitivity and also enhances the stability of long-time sensing. For both devices, TUBALLTM single wall carbon nanotubes, produced by OCSiAl, were used.



“Based on my experience, it is hard to find electrically stable carbon nanotube network film deposited from solution. TUBALLTM nanotubes are very stable, so that we were able to develop long-time stable temperature sensors and tactile pressure sensors,” says Prof. Takei.



The next challenge scientists face to bring truly human-like robots to life is expanding the quantity of sensors in e-skin, as well as further developing signal-processing and signal-feedback systems.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More information: Human-Like Electronic Skin-Integrated Soft Robotic Hand, Advanced Intelligent Systems:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Robotics

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

DNA origami to scale-up molecular motors June 13th, 2019

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

Sensors

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Research partnerships

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project