Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting

Tetraphase heterostructure nanoparticle with six interphases

CREDIT
Northwestern University
Tetraphase heterostructure nanoparticle with six interphases CREDIT Northwestern University

Abstract:
IMAGE
IMAGE: TETRAPHASE HETEROSTRUCTURE NANOPARTICLE WITH SIX INTERPHASES view more

CREDIT: NORTHWESTERN UNIVERSITY

Northwestern University researchers have developed a blueprint for understanding and predicting the properties and behavior of complex nanoparticles and optimizing their use for a broad range of scientific applications. These include catalysis, optoelectronics, transistors, bio-imaging, and energy storage and conversion.

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting

Evanston, IL | Posted on March 1st, 2019

Recent research findings have successfully enabled the synthesis, or creation, of a wide variety of polyelemental nanoparticles -- structures with as many as eight different elements. However, there is still a limited understanding of how the arrangement of phases within these structures impact their properties and how specific interfaces (the common surface between bound structures, called heterostructures) can be optimally designed and synthesized.

"As the combinatorial space of mixtures is nearly infinite, with billions of possibilities, predicting and understanding how specific classes of interfaces can be established in a single particle is crucial for designing new and functional nanostructures and, ultimately, optimizing their properties for various scientific applications," said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and the director of the International Institute for Nanotechnology at Northwestern, who led the research.

In the study, the researchers utilized scanning probe block copolymer lithography (SPBCL), invented and developed at Northwestern by Mirkin, to construct a new library of polyelemental heterostructured nanoparticles containing up to seven different metals.

The research will be published in the March 1 issue of the journal Science.

"We used computational tools, such as density functional theory, to compute interfacial energies between phases, as well as surface energies, and combined these into an overall nanoparticle energy," said Chris Wolverton, the Jerome B. Cohen Professor of Materials Science and Engineering in Northwestern's McCormick School of Engineering. "What we found is that observed morphologies minimized calculated energies. As a result, we now have a tool to predict and understand these types of phase arrangements in nanoparticles."

Wolverton is a co-author of the study.

"Our contribution enables the synthesis of numerous types of interfaces, providing a vast playground to explore their properties and phenomena -- such as novel catalysts and light-emitting nanostructures -- for useful purposes," said co-author Vinayak Dravid. He is the Abraham Harris Professor of Materials Science and Engineering and the director of the Atomic and Nanoscale Characterization Experimental Center (NUANCE) at Northwestern.

####

For more information, please click here

Contacts:
Amanda Morris

847-467-6790

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Science paper is titled "Interface and heterostructure design in polyelemental nanoparticles." Peng-Cheng Chen and Mohan Liu are the first authors of the study:

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Chemistry

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Imaging

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Possible Futures

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Chip Technology

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Optical computing/Photonic computing

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid February 28th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Energy

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Photonics/Optics/Lasers

Hybrid material may outperform graphene in several applications: A structure comprising a molybdenum disulfide monolayer on an azobenzene substrate could be used to build a highly compactable and malleable quasi-two-dimensional transistor powered by light February 28th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project