Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting

Tetraphase heterostructure nanoparticle with six interphases

CREDIT
Northwestern University
Tetraphase heterostructure nanoparticle with six interphases CREDIT Northwestern University

Abstract:
IMAGE
IMAGE: TETRAPHASE HETEROSTRUCTURE NANOPARTICLE WITH SIX INTERPHASES view more

CREDIT: NORTHWESTERN UNIVERSITY

Northwestern University researchers have developed a blueprint for understanding and predicting the properties and behavior of complex nanoparticles and optimizing their use for a broad range of scientific applications. These include catalysis, optoelectronics, transistors, bio-imaging, and energy storage and conversion.

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting

Evanston, IL | Posted on March 1st, 2019

Recent research findings have successfully enabled the synthesis, or creation, of a wide variety of polyelemental nanoparticles -- structures with as many as eight different elements. However, there is still a limited understanding of how the arrangement of phases within these structures impact their properties and how specific interfaces (the common surface between bound structures, called heterostructures) can be optimally designed and synthesized.

"As the combinatorial space of mixtures is nearly infinite, with billions of possibilities, predicting and understanding how specific classes of interfaces can be established in a single particle is crucial for designing new and functional nanostructures and, ultimately, optimizing their properties for various scientific applications," said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and the director of the International Institute for Nanotechnology at Northwestern, who led the research.

In the study, the researchers utilized scanning probe block copolymer lithography (SPBCL), invented and developed at Northwestern by Mirkin, to construct a new library of polyelemental heterostructured nanoparticles containing up to seven different metals.

The research will be published in the March 1 issue of the journal Science.

"We used computational tools, such as density functional theory, to compute interfacial energies between phases, as well as surface energies, and combined these into an overall nanoparticle energy," said Chris Wolverton, the Jerome B. Cohen Professor of Materials Science and Engineering in Northwestern's McCormick School of Engineering. "What we found is that observed morphologies minimized calculated energies. As a result, we now have a tool to predict and understand these types of phase arrangements in nanoparticles."

Wolverton is a co-author of the study.

"Our contribution enables the synthesis of numerous types of interfaces, providing a vast playground to explore their properties and phenomena -- such as novel catalysts and light-emitting nanostructures -- for useful purposes," said co-author Vinayak Dravid. He is the Abraham Harris Professor of Materials Science and Engineering and the director of the Atomic and Nanoscale Characterization Experimental Center (NUANCE) at Northwestern.

####

For more information, please click here

Contacts:
Amanda Morris

847-467-6790

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Science paper is titled "Interface and heterostructure design in polyelemental nanoparticles." Peng-Cheng Chen and Mohan Liu are the first authors of the study:

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

Imaging

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Chemistry

Caught in the act: Images capture molecular motions in real time July 15th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Caught in the act: Images capture molecular motions in real time July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Optical computing/Photonic computing

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

Tools

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases July 12th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

Military

Caught in the act: Images capture molecular motions in real time July 15th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Energy

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices May 31st, 2019

Building next gen smart materials with the power of sound May 28th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sheaths drive powerful new artificial muscles July 11th, 2019

Nanotechnology pioneer Chad Mirkin wins Kabiller Prize in Nanoscience and Nanomedicine: Molly Stevens of Imperial College London receives Kabiller Young Investigator Award July 11th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Photonics/Optics/Lasers

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project