Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected

This is an electron microscope view into the interior of a platinum bubble. The cross-section was exposed with a focused ion beam. Below the hollow Pt bubble the angular YSZ crystal can be seen.

CREDIT
DESY, Satishkumar Kulkarni
This is an electron microscope view into the interior of a platinum bubble. The cross-section was exposed with a focused ion beam. Below the hollow Pt bubble the angular YSZ crystal can be seen. CREDIT DESY, Satishkumar Kulkarni

Abstract:
Platinum, a noble metal, is oxidised more quickly than expected under conditions that are technologically relevant. This has emerged from a study jointly conducted by the DESY NanoLab and the University of Vienna. Devices that contain platinum, such as the catalytic converters used to reduce exhaust emissions in cars, can suffer a loss in efficacy as a result of this reaction. The team around principal author Thomas Keller, from DESY and the University of Hamburg, is presenting its findings in the journal Solid State Ionics.

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected

Hamburg, Germany | Posted on January 28th, 2019

"Platinum is an extremely important material in technological terms," says Keller. "The conditions under which platinum undergoes oxidation have not yet been fully established. Examining those conditions is important for a large number of applications."

The scientists studied a thin layer of platinum which had been applied to an yttria-stabilised zirconia crystal (YSZ crystal), the same combination that is used in the lambda sensor of automotive exhaust emission systems. The YSZ crystal is a so-called ion conductor, meaning that it conducts electrically charged atoms (ions), in this case oxygen ions. The vapour-deposited layer of platinum serves as an electrode. The lambda sensor measures the oxygen content of the exhaust fumes in the car and converts this into an electrical signal which in turn controls the combustion process electronically to minimize toxic exhausts.

At DESY NanoLab, the scientists applied a potential difference of about 0.1 volts to the platinum-coated YSZ crystal and heated it to around 450 degrees Celsius - conditions similar to those found in many technical devices. As a result, oxygen collected beneath the impermeable platinum film reaching pressures of up to 10 bars, corresponding to that in the tyres of a lorry. The pressure exerted by the oxygen, along with the raised temperature, caused small bubbles to form inside the platinum film, typically having a diameter of about 1000 nanometres (0.001 millimetres). "Platinum blistering is a widespread phenomenon, and we would like to develop a better understanding of it," explains Keller. "Our investigation can also be considered representative of this type of electrochemical phenomenon at a range of other boundary layers."

The scientists used a so-called focused ion beam (FIB) as a sort of ultrasharp scalpel in order to slice open the platinum bubbles and examine their inside more closely. They found that the inner surface of the bubbles was lined with a layer of platinum oxide which could be up to 85 nanometres thick, much thicker than expected.

"This massive oxidisation took place in conditions under which it is not normally observed," reports co-author Sergey Volkov, who has written his doctoral thesis at the University of Hamburg on the topic. "As a rule, platinum is a highly stable material, which is precisely why it is chosen for many applications, such as catalytic converters in cars, because it is not easily altered. Our observations are therefore important for such applications." The scientists suspect that the high pressure of the oxygen within the bubble speeds up the oxidation of the metal. This needs to be taken into account in the operation of electrochemical sensors.

####

About Deutsches Elektronen-Synchrotron DESY
DESY is one of the world's leading particle accelerator centres. Researchers use the large?scale facilities at DESY to explore the microcosm in all its variety - ranging from the interaction of tiny elementary particles to the behaviour of innovative nanomaterials and the vital processes that take place between biomolecules to the great mysteries of the universe. The accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools. DESY is a member of the Helmholtz Association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

For more information, please click here

Contacts:
Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Nano-scale oxide formation inside electrochemically-formed Pt blisters at a solid electrolyte interface; T.F. Keller, S. Volkov, E. Navickas, S. Kulkarni, V. Vonk, J. Fleig, A. Stierle; Solid State Ionics, 2019; DOI: 10.1016/j.ssi.2018.11.009:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project