Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production

Abstract:
In a ribbon cutting ceremony Mirrorcle Technologies inaugurated its new cleanroom space at the company’s Richmond, CA headquarters. Reflecting the company’s core competency of reliable optical beam-steering, the ribbon was cut by one of company’s latest products – a laser beam Scan Module which features a powerful 1W, blue (450nm) laser that was developed for the emerging dynamic solid-state lighting (phosphor lighting) market. As the company’s founder and CEO, Dr. Veljko Milanovic, dragged his finger on a tablet controlling the battery-powered Scan Module via Bluetooth, the laser beam, which was steered by the company’s 1.2mm diameter A3I12.2-1200AL MEMS mirror, cut open access to the new manufacturing space adjacent to the company’s established Richmond, California headquarter. The event was lightheartedly named “Facility Expansion and New Cleanroom Opening Ceremony” or FENCOC 2018. The Mirrorcle team, including delegations from its Taiwan and China offices, were joined in its celebration by long-time supporters, vendors, customers, and friends who were welcomed into the newly remodeled, approx. 2000 sq. ft. facility. Dr. Milanovic gave a brief speech on the company’s history, dating back to the Adriatic Research Institute founded in 2001 which preceded the establishment of Mirrorcle as a California Corporation in 2005. “This is our sixth facility as we have continually grown since those early days near UC Berkeley’s campus.” Dr. Milanovic said – “We continue to expand here at Point Isabel surrounded by the waters of the San Francisco Bay which we enjoy viewing from every window.”

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production

Richmond, CA | Posted on November 26th, 2018

The graph that goes “Up”

After showing graphs of remarkable production and shipment increases and humorously remarking how Mirrorcle also has some nice graphs that go “Up”, Dr. Milanovic explained in some more detail the need for expansion of its production specifically for standard serial-production designs: “The opening of our new cleanroom facility significantly expands our in-house manufacturing capability and supplements our established in-house, as well as outsourced MEMS mirror production. With this new facility, we can confidently offer an increased number of MEMS designs at higher volumes and it also allows us to continue catering to low-quantity highly customized beam-steering solutions as required by some customers for their special applications. While expanding our standard production “Downstairs” we continue to have the flexibility to serve R&D needs “Upstairs.”



Opening ceremony full of moving lights



From the foyer of the facility, throughout its hallways, its cleanroom, and even kitchen area, there were laser beams projecting a variety of graphic content and demonstrating some of Mirrorcle’s products. A tracking system was ready for any visitor to toss the ping pong ball and watch it being chased by the laser light (P/N “DEMO-01”). A 3D scanning system measured objects continuously presented before it in a manner used by some of Mirrorcle’s 3D metrology customers (P/N “DEMO-02”). Dynamic laser phosphor signs were projected on cleanroom walls in pure white light next to scrolling laser displays (P/N “DEMO-03”). A 720p projector for video-rate imaging and displays (P/N “DEMO-04”) projected onto a wall in the “Wafer Room”. The shown demos were a small selection of the wealth of different applications in which Mirrorcle MEMS mirrors often act as enabling technologies, ranging from displays, 3D metrology and LIDAR over biomedical imaging to free-space optical (FSO) communications. The patented, gimbal-less MEMS design available in Mirrorcle products allows for superior optical beam-steering capabilities that are globally unique and are the foundation of the company’s continuous growth.

####

About Mirrorcle Technologies, Inc.
Mirrorcle Technologies, Inc. (MTI), founded in 2005, is a California corporation that commercially provides products and services based on its proprietary optical microelectromechanical system (MEMS) technology. Since its founding, and supported by its continuous investment in R&D, MTI has been offering the world's fastest point-to-point (quasi-static) two-axis beam-steering mirrors, as well as resonating-type micromirror devices with rates up to HD video display. MTI is globally the only provider of tip-tilt MEMS actuators in combination with mirrors from submillimeter to several mm in diameter, offering customers a wide selection of specifications to optimize their paths to successful commercialization.

MTI maintains a laboratory at its headquarters and has year-round, 24-7 access to wafer-based CMOS and MEMS fabrication facilities. MEMS mirror fabrication, wafer-level and die-level testing, packaging and outgoing inspections are all performed in clean-rooms. MTI has an established manufacturing service cooperation with a leading MEMS wafer foundry ensuring streamlined, high-quality volume production.

As a privately held company, MTI is able to act efficiently, offering creative and highly responsive service to customers. The company provides highest-quality products and support to facilitate customers’ product development and successful commercialization. The team draws on several decades of combined experience in MEMS design, fabrication, and testing.

For more information, please click here

Contacts:
Media contact:

C h r i s t i a n T h i e l

christian [at] mirrorcletech [dot] com

Tel. +1 510 524 8820

Copyright © Mirrorcle Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Openings/New facilities/Groundbreaking/Expansion

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Iranian Firm Offering Nano-Products on Chinese Market October 16th, 2018

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Possible Futures

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

MEMS

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Announcements

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project