Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields

Abstract:
Two-dimensional magnetism has long intrigued and motivated researchers for its potential to unleash new states of matter and utility in nano-devices.

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields

Chestnut Hill, MA | Posted on October 31st, 2018

In part the excitement is driven by predictions that the magnetic moments of electrons - known as "spins" - would no longer be able to align in perfectly clean systems. This enhancement in the strengths of the excitations could unleash numerous new states of mater, and enable novel forms of quantum computing.

A key challenge has been the successful fabrication of perfectly clean systems and their incorporation with other materials. However, for more than a decade, materials known as "van der Waals" crystals, held together by friction, have been used to isolate single-atom-thick layers leading to numerous new physical effects and applications.

Recently this class has been expanded to include magnetic materials, and it may offer one of the most ambitious platforms yet in scientific efforts to investigate and manipulate phases of matter at the nanoscale, researchers from Boston College, the University of Tennessee, and Seoul National University, write in the latest edition of the journal Nature.

Two-dimensional magnetism, the subject of theoretical explorations and experimentation for the past 80 years, is enjoying a resurgence thanks to a group of materials and compounds that are relatively plentiful and easy to manipulate, according to Boston College Associate Professor of Physics Kenneth Burch, a first author of the article "'Magnetism in two-dimensional van der Waals materials."

The most oft-cited example of these materials is graphene, a crystal constructed in uniform, atom-thick layers. A procedure as simple as applying a piece of scotch tape to the crystal can remove a single layer, providing a thin, uniform section to serve as a platform to create novel materials with a range of physical properties open to manipulation.

"What's amazing about these 2-D materials is they're so flexible," said Burch. "Because they are so flexible, they give you this huge array of possibilities. You can make combinations you could not dream of before. You can just try them. You don't have to spend this huge amount of time and money and machinery trying to grow them. A student working with tape puts them together. That adds up to this exciting opportunity people dreamed of for a long time, to be able to engineer these new phases of matter."

At that single layer, researchers have focused on spin, what Burch refers to as the "magnetic moment" of an electron. While the charge of an electron can be used to send two signals - either "off" or "on", results represented as either zero or one - spin excitations offer multiple points of control and measurement, an exponential expansion of the potential to signal, store or transmit information in the tiniest of spaces.

"One of the big efforts now is to try to switch the way we do computations," said Burch. "Now we record whether the charge of the electron is there or it isn't. Since every electron has a magnetic moment, you can potentially store information using the relative directions of those moments, which is more like a compass with multiple points. You don't just get a one and a zero, you get all the values in between."

Potential applications lie in the areas of new "quantum" computers, sensing technologies, semiconductors, or high-temperature superconductors.

"The point of our perspective is that there has been a huge emphasis on devices and trying to pursue these 2-D materials to make these new devices, which is extremely promising," said Burch. "But what we point out is magnetic 2D atomic crystals can also realize the dream of engineering these new phases - superconducting, or magnetic or topological phases of matter, that is really the most exciting part. It is not just fundamentally interesting to realize these theorems that have been around for 40 years. These new phases would have applications in various forms of computing, whether in spintronics, producing high temperature superconductors, magnetic and optical sensors and in topological quantum computing."

Burch and his colleagues - the University of Tennessee's David Mandrus and Seoul National University's Je-Geun Park - outline four major directions for research into magnetic van der Waals materials:

Discovering new materials with specific functionality. New materials with isotropic or complex magnetic interactions, could play significant roles in the development of new supercondcutors.
These new materials can also lead to a deeper understanding of fundamental issues in condensed matter physics, serving as unique platforms for experimentation.
The materials will be tested for the potential to become unique devices, capable of delivering novel applications. The two-dimensional structure of these materials makes them more receptive to external signals.
These materials possess quantum and topological phases that could potentially lead to exotic states, such as quantum spin liquids, "skyrmions," or new iterations of superconductivity.
Germano Iannacchione, a National Science Foundation (NSF) program officer who oversees grants to Burch and other materials scientists, said the co-authors offer the broader community of scientists ideas that can serve to guide a dynamic field pushing beyond boundaries in materials research.

"Magnetism in 2D van Der Waals materials has grown into a vibrant field of study," said Iannacchione. "Its investigators have matured from highly focused researchers to statesmen shepherding a field, broadening applications into as many channels as possible. The review captures the multiplicative aspect of steady, focused, and sometimes risky research that opens vast new frontiers, with tremendous potential for applications in quantum computing and spintronics."

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum communication

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

2 Dimensional Materials

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Skyrmions

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project