Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level

The research has implications for everything from nuts and bolts to turbine engines.
The research has implications for everything from nuts and bolts to turbine engines.

Abstract:
•Study shows anti-corrosive oxides develop new structures and compositions depending on how fast the film develops
•Findings could help slow age-old problem of corrosion
•‘Opens the door to drastically new ways of protecting metals,’ researcher says

Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level

Evanston, IL | Posted on October 3rd, 2018

Corrosion is an age-old problem that is estimated to cost about $1 trillion a year, or about 5 percent of the U.S. gross domestic product. Corrosion of metals can be particularly bad, but fortunately they are normally protected from catastrophic damage by naturally forming, super-thin oxide films.



Traditionally, these protective films have been viewed as simple oxides of well-anticipated compounds, but new work from scientists at Northwestern University, the University of Virginia and the University of Wisconsin-Madison reveals dramatic new insights into these oxide films.



Using state-of-the-art experimental techniques and theoretical modeling, the scientists were able to analyze oxide films at the atomic level, deciphering how the atoms are arranged in the oxides.



Their findings? The protective films develop new structures and compositions that depend on how fast the oxide film grows. The study’s authors say their findings could provide clues about how to make the protective films better -- perhaps much, much better.



It’s a breakthrough that could have implications for everything from nuts and bolts to high-technology batteries and turbine engines.



“This changes many things about how we understand these oxide films and opens the door to drastically new ways of protecting metals,” said Laurence Marks, professor of materials science and engineering at Northwestern’s McCormick School of Engineering, who led the study. “We now know that there are ways to predict the chemical composition of these films, something we can exploit so the protective films last much longer.”



The study was published today (Oct. 3) by the journal Physical Review Letters.



“We now have more routes than ever to control and tune oxides to protect materials,” said John Scully, the Charles Henderson Chaired Professor and Chair of the Department of Materials Science and Engineering at the University of Virginia and one of the study’s authors.



“This provides key information about how to design new materials that will corrode far less,” said Northwestern’s Peter Voorhees, another of the study’s authors. Voorhees is the Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern Engineering.



The team studied, in detail, the oxides that form on alloys composed of nickel and chromium, which are widely used in a variety of products, such as the heating elements of a household toaster or in aircraft engines.



These oxides are also used for applications when there is water present, such as in dental implants. It has long been known that these oxides work when hot and resist corrosion in the mouth because of the formation of an oxide of chromium. It was assumed that the nickel formed a separate oxide, or in some cases dissolved away in the body. The team found something unexpected -- that the oxide was not just chromium and oxygen, but instead contained a very large number of nickel atoms.



Why? Because the nickel atoms do not have time to escape from the oxide, becoming captured inside it. The fraction that is captured depends upon how fast the oxide grows. If it grows very slowly, the nickel atoms can escape. If it grows very fast, they cannot.



This occurs both when the metals are reacting with oxygen from the air at high temperatures, as well as when they are reacting with water in ships or in dental implants. The atoms that are captured in the oxide change many of the properties, the study’s authors say.



The findings mean it is possible to deliberately trap atoms into these oxides in new ways, and thus change how they behave.



“We are close to the limits of what we can do with aircraft engines, as one example,” said John Perepezko, the IBM-Bascom Professor of Materials Science and Engineering at the University of Wisconsin-Madison and another of the study’s authors. “This new vision of protective oxide formation leads to many new ways one could build better engines.”

The title of the paper is “Non-equilibrium Solute Capture in Passivating Oxide Films.”



The research was supported by an Office of Naval Research Multidisciplinary University Research Initiative (MURI) award (grant number N00014-16-1-2280).

####

For more information, please click here

Contacts:
Megan Fellman
847-491-3115


Source contacts:
Laurence Marks


John Scully

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Caught in the act: Images capture molecular motions in real time July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Materials/Metamaterials

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

Military

Caught in the act: Images capture molecular motions in real time July 15th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project