Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18

Abstract:
Mirrorcle Technologies demonstrates a MEMS-based Programmable Light Source prototype at CES and in Las Vegas and at the Photonics West exhibition in San Francisco. A high-power 445-450nm (wavelength) laser beam is programmably directed onto a 10 x 10mm phosphor plate where it creates a very high brightness and luminance image. This image is projected by a projection (condenser) lens in a desired direction within a lens-governed field of regard. The key breakthrough is that by selectively directing the high-power laser by means of the company’s gimbal-less MEMS mirror to desired section of the phosphor, the projected light can be arbitrarily shaped with a high contrast ratio – e.g. it can illuminate only a section of the full field of regard, it can project shapes or symbols or selectively allocate brightness onto dynamically adjustable spots to highlight objects of interest. The outgoing beam is fully programmable in terms of shape, brightness and direction from Mirrorcle’s own software such as MirrorcleDraw, or from customers’ own applications built with Mirrorcle’s SDKs. Enabling this novel lighting approach in a highly compact and efficient way is Mirrorcle’s MEMS mirror technology which allows for fully arbitrary scanning of not only e.g. raster scans across the whole field of regard or selectively in controllable areas within that space, but also enables shaping the outgoing light by means of e.g. vector graphics scanning of shapes, symbols or characters. Ultimately, the mirror is able to direct all of the laser power to a single tiny dot on the phosphor plate and create a very low divergence high brightness light beam into the distance.

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18

Richmond, CA | Posted on August 30th, 2018

Transmissive Mode vs. Reflective Mode PLS

Mirrorcle has presented PLS concepts in both reflective and transmissive types since 2015. The 2015 prototypes were put together using off-the-shelf components for laser diode sources and phosphor targets. In transmissive mode, the blue laser light enters from one side, and exits the other side of the phosphor. A transmissive target will fluoresce from both sides of the target, therefore limiting the light that is gathered by the projection lens to output from the module. In reflective mode, the phosphor has a metal backing which re-directs the light all to the same side. This maximizes the light collected by the projection lens, yielding in a brighter output. In subsequent 2018 designs, PLS-02 and PLS-03, Mirrorcle has demonstrated reflective mode systems with brighter outputs, producing >120 lumen white light projector with a 1W laser and reflective phosphor target.



Controllable Laser-Phosphor Projector suitable for many applications

The PLS demo, dubbed PLS-01, is a lower-power version of a new technology for programmable projection of light based on laser-phosphor projection. This technology is geared for a number of industries and application areas including automotive lighting, security and industrial lighting, search lights etc. Bright white light, shaped by the rapid movement of the MEMS mirror, is projected by a condenser lens to a target surface area such as e.g. road or a wall or carpet. The projected light is real-time configurable by Mirrorcle’s standard software suite. It is the result of the unique capability of Mirrorcle MEMS mirrors to run fast scan patterns in both axes and operate safely with high optical laser powers (several Watts) and at elevated temperatures, simulating an automotive headlight environment. Over 100 hours of high power testing has been done with 4W of CW power on the MEMS mirror at room temperature, and at 60°C. These devices have pushed the limits of the laser source, surviving >8W of CW power in multiple hour-long tests.

####

About Mirrorcle Technologies, Inc.
Mirrorcle Technologies, Inc. (MTI), founded in 2005, is a California corporation that commercially provides products and services based on its proprietary optical microelectromechanical system (MEMS) technology. Since its founding, and supported by its continuous investment in R&D, MTI has been offering the world's fastest point-to-point (quasi-static) two-axis beam-steering mirrors, as well as resonating-type micromirror devices with rates up to HD video display. MTI is globally the only provider of tip-tilt MEMS actuators in combination with mirrors from submillimeter to several mm in diameter, offering customers a wide selection of specifications to optimize their paths to successful commercialization.

MTI maintains a laboratory at its headquarters and has year-round, 24-7 access to wafer-based CMOS and MEMS fabrication facilities. MEMS mirror fabrication, wafer-level and die-level testing, packaging and outgoing inspections are all performed in clean-rooms. MTI has an established manufacturing service cooperation with a leading MEMS wafer foundry ensuring streamlined, high-quality volume production.

As a privately held company, MTI is able to act efficiently, offering creative and highly responsive service to customers. The company provides highest-quality products and support to facilitate customers’ product development and successful commercialization. The team draws on several decades of combined experience in MEMS design, fabrication, and testing.

For more information, please click here

Contacts:
Media contact:

Christian

christian [at] mirrorcletech [dot] com

Tel. +1 510 524 8820

Mirrorcle Technologies Inc.

4905 Central Ave., Ste. 200

Richmond, CA 94804

www.mirrorcletech.com

Tel: +1 510 524 8820

Fax: +1 510 542 8806

Copyright © Mirrorcle Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project