Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers

Treatment with a nanoparticle and hydrogen peroxide (right panel) left little in the way of bacteria (in blue) or the sticky biofilm matrix (in red), making the combination a potent force against dental plaque.
Treatment with a nanoparticle and hydrogen peroxide (right panel) left little in the way of bacteria (in blue) or the sticky biofilm matrix (in red), making the combination a potent force against dental plaque.

Abstract:
Combine a diet high in sugar with poor oral hygiene habits and dental cavities, or caries, will likely result. The sugar triggers the formation of an acidic biofilm, known as plaque, on the teeth, eroding the surface. Early childhood caries is a severe form of tooth decay that affects one in every four children in the United States and hundreds of millions more globally. It's a particularly severe problem in underprivileged populations.

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers

Philadelphia, PA | Posted on August 8th, 2018

In a study published in Nature Communications this week, researchers led by Hyun (Michel) Koo of the University of Pennsylvania School of Dental Medicine in collaboration with David Cormode of Penn's Perelman School of Medicine and School of Engineering and Applied Science used FDA-approved nanoparticles to effectively disrupt biofilms and prevent tooth decay in both an experimental human-plaque-like biofilm and in an animal model that mimics early-childhood caries.

The nanoparticles break apart dental plaque through a unique pH-activated antibiofilm mechanism.

"It displays an intriguing enzyme-like property whereby the catalytic activity is dramatically enhanced at acidic pH but is 'switched off' at neutral pH conditions," says Koo, professor in Penn Dental Medicine's Department of Orthodontics and in the divisions of Pediatric Dentistry and Community Oral Health. "The nanoparticles act as a peroxidase, activating hydrogen peroxide, a commonly used antiseptic, to generate free radicals that potently dismantle and kill biofilms in pathological acidic conditions but not at physiological pH, thus providing a targeted effect."

Because the caries-causing plaque is highly acidic, the new therapy is able to precisely target areas of the teeth harboring pathogenic biofilms without harming the surrounding oral tissues or microbiota.

The particular iron-containing nanoparticle used in the experiments, ferumoxytol, is already FDA-approved to treat iron-deficiency, a promising indication that a topical application of the same nanoparticle, used at several-hundred-fold lower concentration, would also be safe for human use.

Though some scientists have questioned whether coatings used on ferumoxytol and other nanoparticles used for medical applications would render them catalytically inert, Koo, Liu, and Cormode demonstrated that they maintained peroxidase-like activity, activating hydrogen peroxide.

After testing the ferumoxytol-hydrogen peroxide combination on a tooth-enamel-like material, the team moved on to an experimental set-up that more closely replicated the conditions of the human mouth.

"We used plaque samples from caries-active subjects to reconstruct these highly pathogenic biofilms on real human tooth enamel," says Koo. "This simulation showed that our treatment not only disrupts the biofilm but also prevents mineral destruction of the tooth's surface. That offered very strong evidence that this could work in vivo."

Further studies in a rodent model that closely mirrors the stages of caries development in humans showed that twice-a-day rinses of ferumoxytol and hydrogen peroxide greatly reduced the severity of caries on all of the surfaces of the teeth and also completely blocked the formation of cavities in the enamel.

As further evidence of the treatment's targeted effect, the researchers found no significant change in the diversity of microbes in the mouth after therapy and found no signs of tissue damage.

"This therapy isn't killing microorganisms indiscriminately," Koo says, "but rather it is acting only where the pathological biofilm develops. Such a precise therapeutic approach can target the diseased sites without disrupting the ecological balance of the oral microbiota, which is critical for a healthy mouth, while also avoiding infection by opportunistic pathogens."

Incorporating nanoparticles in a mouth rinse or toothpaste could be a cost-effective way to significantly improve their effectiveness, says Koo. Many of these products already contain hydrogen peroxide and would only require the addition of a small amount of relatively inexpensive nanoparticles. With evidence backing this approach in both an animal model and a human-like model of tooth decay, the research team is actively working to test its clinical efficacy.

###

Koo was recently awarded the William H. Bowen Research in Dental Caries Award at the International Association for Dental Research in London, one of the highest awards bestowed by the organization, for his consistent and innovative record of developing novel ways to treat caries.

The paper's lead author Yuan Liu, a doctor of science in dentistry student in Koo's lab, was also recognized for this work as one of two winners of the American Association for Dental Research's Hatton Competition Award earlier this year.

In addition to Koo, Liu, and Cormode, coauthors were Geelsu Hwang, Dongyeop Kim, Yue Huang, Aurea Simon-Soro, Hoi-In Jung, Zhi Ren, Yong Li, and Faizan Alawi, all of Penn Dental Medicine; Pratap Naha and Sarah Gubara of Cormode's lab; and Domenick Zero and Anderson Hara of Indiana University's School of Dentistry.

The study was supported in part by the National Institute for Dental and Craniofacial Research (grants DE025848 and DE018023) and the University of Pennsylvania Research Foundation. Yuan Liu was also the recipient of the Colgate-Palmolive Pediatric Dentistry DScD Fellowship.

####

For more information, please click here

Contacts:
Katherine Unger Baillie

215-898-9194

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Possible Futures

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Discoveries

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Research partnerships

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Dental

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project