Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use nanotechnology to improve the accuracy of measuring devices

Abstract:
Scientists from Higher school of economics and the Federal Scientific Research Centre 'Crystallography and Photonics' have synthesized multi-layered nanowires in order to study their magnetoresistance properties. Improving this effect will allow scientists to increase the accuracy of indicators of various measuring instruments, such as compasses and radiation monitors. The results of the study have been published in the paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.'

Researchers use nanotechnology to improve the accuracy of measuring devices

Moscow, Russia | Posted on July 24th, 2018

One of the unique features of artificial nanostructures is the giant magnetoresistance effect in thin layers of metal. This effect is exploited in various electronic devices.

The scientists synthesized multi-layered copper and nickel nanowires, in order to study their characteristics, which depend on the layers' composition and geometry. 'We expect that the transition to multi-layered nanowires will increase the giant magnetoresistance effect considerably. Today, we are 'choosing' the method of nanowire synthesis, in order to get this effect', said Ilia Doludenko, Moscow Institute of Electronics and Mathematics (MIEM HSE) graduate and one of the authors.

To determine the correlation between the synthesis parameters and the crystal structure, the scholars synthesized nanowires of different lengths. The nanowire length was determined by the number of deposition cycles; one nickel layer and one copper layer were deposited in each cycle. The size of the nanowires was determined using a scanning electron microscope (SEM). The number of pairs of layers in the nanowires was found to be 10, 20, or 50, according to the number of electrodeposition cycles.

When the length of the nanowire was compared to the number of layers, it turned out that the relationship between the nanowire length and the number of layers was nonlinear. The average lengths of the nanowires composed of 10, 20, and 50 pairs of layers were, respectively, 1.54 μm, 2.6 μm, and 4.75 μm. The synthesized nanowires all had a grain structure with crystallites of different sizes, from 5-20 nm to 100 nm. Large, bright reflections were mainly due to metals (Ni and Cu) while diffuse rings and small reflections are generally related to the presence of copper oxides.

An elemental analysis confirmed the presence of alternating Ni and Cu layers in all of the nanowires in the study. However, the mutual arrangement of layers may differ. Ni and Cu layers in the same nanowire may be oriented perpendicular to its axis or be at a particular angle. The individual units of the same nanowire may have different thicknesses. The thickness of individual units in nanowires is in the range of 50-400 nm.

According to the study authors, this heterogeneity depends on the parameters of the pore and decreases closer to the pore mouth. This leads to an increase in current, enhancement of deposition rate, and, as a result, an increase in the deposited layer thickness. Another possible reason is the difference in the diffusion mobilities of ions of different metals. This explains the nonlinear relationship between the nanowire length and the number layers mentioned above. The study of the composition of particular units demonstrated that copper units consist mainly of copper, while nickel is almost entirely absent. Nickel units, on the other hand, always contain a certain amount of copper. This amount may sometimes be as high as 20%.

The relevance of these findings relates to the potential creation of more accurate and cheaper detectors of motion, speed, position, current and other parameters. Such instruments could be used in the car industry, or to produce or improve medical devices and radiation monitors and electronic compasses.

####

For more information, please click here

Contacts:
Liudmila Mezentseva

7-926-313-2406

Copyright © National Research University Higher School of Economics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.':

Related News Press

News and information

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Imaging

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

New insight into molecular processes November 23rd, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Possible Futures

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Discoveries

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Announcements

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Tools

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Automotive/Transportation

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project