Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Collaboration yields discovery of 12-sided silica cages

Doctoral student Melik Turker, left, holds a model of a dodecahedron in the lab of Ulrich Wiesner. Also pictured are doctoral student Yunye Gong, center, holding a model of a cage structure, and postdoctoral researcher Kai Ma, holding an icosahedron. The group's paper on their discovery of nanoscale 12-sided silicon cage structures published recently in Nature; in the back row, left-to-right, are Wiesner, engineering professor Peter Doerschuk and postdoc Tangi Aubert.
Doctoral student Melik Turker, left, holds a model of a dodecahedron in the lab of Ulrich Wiesner. Also pictured are doctoral student Yunye Gong, center, holding a model of a cage structure, and postdoctoral researcher Kai Ma, holding an icosahedron. The group's paper on their discovery of nanoscale 12-sided silicon cage structures published recently in Nature; in the back row, left-to-right, are Wiesner, engineering professor Peter Doerschuk and postdoc Tangi Aubert.

Abstract:
What do you call a materials science discovery that was given a major boost by a lecture from a Nobel laureate in chemistry, used cryogenic electron microscopy (cryo-EM), and was pushed further along by a doctoral student's thesis on machine learning?

Collaboration yields discovery of 12-sided silica cages

Ithaca, NY | Posted on June 20th, 2018

Typical Cornell research.

In a paper published in Nature, a team led by Uli Wiesner, the Spencer T. Olin Professor of Engineering in the Department of Materials Science and Engineering at Cornell University, reports discovery of 10-nanometer, individual, self-assembled dodecahedral structures - 12-sided silica cages that could have applications in mesoscale material assembly, as well as medical diagnosis and therapeutics.

The team's paper, "Surfactant Micelle Self-Assembly Directed Highly Symmetric Ultrasmall Inorganic Cages," was published June 20.

Other members of the team include postdoctoral researchers Kai Ma and Tangi Aubert from the Wiesner Group; Peter Doerschuk, professor in the Department of Electrical and Computer Engineering and in the Meinig School of Biomedical Engineering; and doctoral student Yunye Gong from the Doerschuk Group.

Techniques from Gong's doctoral thesis, "Computing and Understanding Statistical Models for Heterogeneous Biological Nano-machines," were used to determine the 3D shape of the cage structures.

"People had suggested that these very complex nanostructures would be structural units of bulk materials," Wiesner said, "but nobody had ever identified these cages as isolated building blocks."

The way to achieve that, Wiesner said: arrest the chemical reaction that produces these shapes early on to see the structure at its inception. "This was indeed part of an ongoing effort of silica chemistry optimization in our group," Ma said.

To image them, particles in water were rapidly frozen to cryogenic temperatures, so rapidly that instead of ice, water becomes a glassy solid. Within the thin glassy films the cages could be imaged at all different orientations by cryo-EM. Approximately 19,000 single-particle images were collected in a large effort by Ma and other members of the Wiesner Group.

Gong's machine-learning algorithms, originally developed for the study of virus protein cages, were applied to subsets of these images, sorting them into classes and computing a 3D reconstruction for each class. A calculation based on 2,000 images takes about a day.

Much like a hospital CT scan, the single-particle 3D reconstructions revealed the external shape and the internal structure of the particle.

"We were delighted to have the opportunity to collaborate with the Wiesner Group on this problem," Gong said, "and demonstrate the breadth of what our algorithms and software can do."

The group says this might be the first time that single-particle 3D reconstruction of cryo-EM images using artificial intelligence - a rapidly developing technique in structural biology - has been successfully applied to synthetic materials discovery.

"When I first raised the idea of confirming the cage structure by this technique, most people did not believe this was possible because of the material's complexity," Ma said.

"That this revealed a beautiful dodecahedron-type cage, the most highly symmetric of the five Platonic solids already studied in antiquity, was immensely rewarding," Wiesner said.

So where does the Nobel laureate fit in? Several years back, Wiesner sat in on a lecture by Roald Hoffmann, the Frank H.T. Rhodes Professor Emeritus in the Department of Chemistry and Chemical Biology. One topic of the lecture was so-called clathrate cage structures. A clathrate is a compound in which a guest molecule is trapped within the crystal cage of another.

That got Wiesner thinking about the work his lab had been doing on nanoscale structures, which had appeared as just rings in preliminary examination. "After the lecture, I literally ran over to Duffield Hall to tell Kai Ma that I thought the higher-order structures he was sometimes seeing would probably be clathrate-type structures," Wiesner said. "Kai did more microscopy work and said, 'Uli, I think you're right.'"

That serendipitous connection, and the unlikely collaboration involving machine learning with Doerschuk and Gong, is par for the course at Cornell, Wiesner said.

"It's a typical Cornell story," he said. "You meet these people from different departments, and everything contributes to a major discovery in science of a beautiful structure that had never been seen before."

Doerschuk concurred: "I came to Cornell in 2006. One of the main attractions was the claim that barriers between departments are low and that interdisciplinary work is encouraged. Having now worked at Cornell for a decade, I'm delighted to report that the claim is true."

In the paper, Wiesner contends that "based on recent successes ... of ultrasmall fluorescent silica nanoparticles ["Cornell dots"] ... a whole range of novel diagnostic and therapeutic probes with drugs hidden inside of the cages can be envisaged."

###

Doctoral students Teresa Kao and Melik Turker also contributed to this work. Support came from the National Institutes of Health via a U54 Center for Cancer Nanotechnology Excellence grant to the Wiesner group, the National Science Foundation via an award to the Doerschuk group, and Gong's Google Ph.D. Fellowship in Machine Learning.

The researchers made use of the Cornell Center for Materials Research Shared Facilities, supported by the NSF, and the Nanobiotechnology Center at Cornell.

####

For more information, please click here

Contacts:
Jeff Tyson

607-793-5769

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project