Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists use photonic chip to make virtual movies of molecular motion

Yogesh Joglekar, Ph.D., Associate Professor of Physics, IUPUI is a theoretical physicist with interests in graphene, PT-waveguides, memristors, and mathematics.
CREDIT
School of Science, IUPUI
Yogesh Joglekar, Ph.D., Associate Professor of Physics, IUPUI is a theoretical physicist with interests in graphene, PT-waveguides, memristors, and mathematics. CREDIT School of Science, IUPUI

Abstract:
Scientists from IUPUI, MIT, Nokia Bell Labs, NTT and the University of Bristol in England, which led the study, have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level. The study is published in the May 31 issue of the journal Nature.

Scientists use photonic chip to make virtual movies of molecular motion

Indianapolis, IN | Posted on June 6th, 2018

The work described in the new study could lead to new methods of molecular modeling, which may help in the creation of new chemicals for use as pharmaceuticals.

The new methods of simulation exploit a similarity between the vibrations of atoms in molecules and the way photons of light move in an optical chip. Using analogies between photonics and molecular vibrations as a starting point provided the researchers with a head start in implementing intriguing simulations. Building on this, they hope to create quantum simulation and modeling tools that provide a practical advantage in the coming years.

"With this platform, in addition to vibrations of a stand-alone molecule, we are able to model the effects of environment on these quantum vibrations," said study co-author and IUPUI physicist Yogesh Joglekar. "The chip allows us to study open quantum systems, an extremely challenging subject."

Understanding the behavior of molecules requires an understanding of how they vibrate at the quantum level. But modeling these dynamics requires massive computational power, beyond what exists or is expected from coming generations of supercomputers.

An optical chip uses light instead of electricity and can operate as a quantum computing circuit. In the study published in Nature, data from the chip allows a frame-by-frame reconstruction of atomic motions to create a virtual movie of how a molecule vibrates.

"We can think of the atoms in molecules as being connected by springs," said Bristol physicist Anthony Laing, who led the project. "Across the whole molecule, the connected atoms will collectively vibrate, like a complicated dance routine. At a quantum level, the energy of the dance goes up or down in well-defined levels, as if the beat of the music has moved up or down a notch. Each notch represents a quantum of vibration.

"We can program a photonic chip to mimic the vibrations of a molecule mapping its components to the structure of a particular molecule, say ammonia, and then simulate how a particular vibrational pattern evolves over some time interval. By taking many time intervals, we essentially build up a movie of the molecular dynamics."

Co-first author Chris Sparrow, who was a student on the project, noted the simulator's versatility: "The chip can be reprogrammed in a few seconds to simulate different molecules. Because time is a controllable parameter, we can immediately jump to the most interesting points of the movie, or play the simulation in slow motion. We can even rewind the simulation to understand the origins of a particular vibrational pattern."

The photonic chip used in the experiments was fabricated by NTT. "Part of this study was to demonstrate techniques that go beyond the standard harmonic approximation of molecular dynamics," Laing said. "We need to develop these methods to increase the real-world accuracy of our models."

###

Funding sources of all co-authors of "Simulating the vibrational quantum dynamics of molecules using photonics" are listed in the paper. IUPUI's Joglekar was supported by a National Science Foundation CAREER award.

####

For more information, please click here

Contacts:
Lauren Kay

317-274-9234

Copyright © INDIANA UNIVERSITY-PURDUE UNIVERSITY INDIANAPOLIS SCHOOL OF SCIENCE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Imaging

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Tools

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Nanoscale thermometers from diamond sparkles: A novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale has been developed May 3rd, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Nanometrics Announces Participation in Upcoming Investor Conferences May 3rd, 2019

Photonics/Optics/Lasers

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project