Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques

Abstract:
Leti, a research institute at CEA Tech, and Cellmic LLC, a company dedicated to improving patient healthcare with smartphones and biophotonics, today announced that they joined forces to accelerate the market adoption of lens-free imaging and sensing techniques by growing Leti’s patent portfolio with a core patent from Cellmic.

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques

Grenoble, France and Los Angeles, CA | Posted on May 3rd, 2018

Pioneered by Aydogan Ozcan, UCLA’s chancellor’s professor, and his research group, this patented computational lens-free imaging approach reconstructs detailed images of specimens from their holographic shadows that contain unique 3D information of samples, such as tissue sections, blood smears and cell cultures. Cellmic LLC, a UCLA spin-off, holds some of the core patents of this important computational imaging technique.

Lens-free microscopy has emerged as a powerful imaging and sensing platform that replaces bulky and expensive optical components that are found in standard optical microscopy systems with dedicated algorithms. Leti developed a lens-free microscope in 2012. Today the technology offers an ultra-wide field-of-view, tracking more than 10,000 biological, microscopic objects at a time per image, providing lab techs with a cost-effective, highly compact and robust solution. The Cellmic patent complements Leti’s IP portfolio and accelerates its ongoing valorization of its lens-free technology for diagnostics, biomedical sensing and related applications.

“Lens-free, on-chip imaging offers a very unique opportunity to bring advanced microscopy and sensing tools into your pocket with a fraction of the cost of existing technologies,” said Ozcan, who is also a co-founder of Cellmic LLC. “We are proud to have made fundamental contributions to establish this technique, which has been benefiting researchers in both academia and industry at a global scale.”

“Our partnership with Leti will help this powerful imaging and sensing technology to reach different markets through Leti’s powerful collaborations with other companies in various industries,” added Neven Karlovac, the CEO and co-founder of Cellmic LLC.

“Ozcan’s research lab and Cellmic have done ground-breaking work in developing lens-free imaging techniques,” said Jean-Marc Dinten, Leti Imaging department manager and international expert. “This core patent complements our lens-free technology development, such as point-of-care diagnosis for spinal meningitis.”

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.
CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new

About Cellmic LLC
Cellmic, LLC is a technology company located in Los Angeles, California, and dedicated to improving patient healthcare with the use of smartphones and bio-photonics. The company is a licensee of UCLA and collaborates closely with Professor Aydogan Ozcan and his research group at the university. Cellmic’s current products in use around the globe are a suite of rapid diagnostic test readers for lateral flow immunoassays including high-performance chromatographic, calorimetric, and fluorescent readers, as well as test development tools and cloud services. Main applications are in medical and veterinary point-of-care diagnostics, drugs-of abuse testing, food and crop testing, and bio-defenses. The company continues its R&D for lens free holographic microscopes and handheld analyzers for a variety of applications. Cellmic holds the ISO 13485, FDA and the CE Mark registrations as a Medical Device Manufacturer. The company was awarded Technology Pioneer 2015 by the World Economic Forum and was a finalist for the Katerva, Nokia Sensing X-Challenge, and SPIE PRISM awards, and has won numerous government and corporate research contracts. For more information see www.cellmic.com and www.rapidassayreaders.com.

For more information, please click here

Contacts:
Press Contact Leti
Agency
+33 6 74 93 23 47


Press Contact Cellmic
Neven Karlovac
+1 310 443 2070

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Imaging

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Possible Futures

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Nanomedicine

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Announcements

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Tools

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

John Chong of Kionix Named Chair of MEMS & Sensors Industry Group Governing Council February 6th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Research partnerships

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project