Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes

A sample of cesium lead bromide, a new material that makes nuclear radiation detection cheaper and more accessible.
A sample of cesium lead bromide, a new material that makes nuclear radiation detection cheaper and more accessible.

Abstract:
It has been more than 30 years since a material with this performance has been developed
Material is inexpensive to produce, an advantage over material currently used
Other applications include biomedical imaging, astronomy and spectroscopy

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes

Evanston, IL | Posted on April 25th, 2018

A Northwestern University and Argonne National Laboratory research team has developed an exceptional next-generation material for nuclear radiation detection that could provide a significantly less expensive alternative to the detectors now in commercial use.

Specifically, the high-performance material is used in a device that can detect gamma rays, weak signals given off by nuclear materials, and can easily identify individual radioactive isotopes. It has been more than 30 years since a material with this performance was developed, with the new material having the advantage of inexpensive production.

Potential uses for the new device include more widespread detectors -- including handheld -- for nuclear weapons and materials as well as applications in biomedical imaging, astronomy and spectroscopy.

“Governments of the world want a quick, low-cost way to detect gamma rays and nuclear radiation to fight terrorist activities, such as smuggling and dirty bombs, and the proliferation of nuclear materials,” said Northwestern’s Mercouri G. Kanatzidis, the corresponding author of the paper. “This has been a very difficult problem for scientists to solve. Now we have an exciting new semiconductor device that is inexpensive to make and works well at room temperature.”

Kanatzidis is a Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. He has a joint appointment with Argonne.

The research was published this week in the journal Nature Communications.

In 2013, Argonne published a scientific study noting the promise of cesium lead bromide in the form of perovskite crystals for high-energy radiation detection. Since then, researchers led by Kanatzidis, Duck Young Chung of Argonne and Constantinos Stoumpos of Northwestern have worked to purify and improve the material.

The breakthrough came when Yihui He, a postdoctoral fellow in Kanatzidis’ group and the paper’s first author, took the improved material and reconfigured the semiconductor device. Instead of using the same electrode on either side of the crystal, he used two different electrodes. With this asymmetrical design, the device only conducts electricity when gamma rays are present.

The researchers compared the performance of their new cesium lead bromide detector to the conventional cadmium zinc telluride (CZT) detector and found it performed just as well in detecting gamma rays with high resolution from cobalt-57.

“We achieved the same performance in two years of research and development as others did in 20 years with cadmium zinc telluride, the expensive material that is currently used,” Kanatzidis said.

It is important to know what the gamma-ray emitting material is, Kanatzidis stressed, because some materials are legal and some are illegal. Each radioactive isotope possesses its own “fingerprint”: a different decay behavior and a unique characteristic gamma-ray emission spectrum. The new cesium lead bromide detector can detect these fingerprints.

In the study, the researchers found the detector successfully identified radioactive isotopes americium-241, cobalt-57, cesium-137 and sodium-22. The researchers also produced larger crystal samples to demonstrate the material can be scaled up.

The Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (contract No. DE-AC02-06CH11357, Argonne National Laboratory) and the Department of Homeland Security ARI program (grant 2014-DN-077-ARI086-01) supported the research.

####

For more information, please click here

Contacts:
Megan Fellman
847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is titled “High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr single crystals.”:

Related News Press

News and information

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

A bullet-proof heating pad November 2nd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Possible Futures

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Discoveries

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Announcements

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Homeland Security

A bullet-proof heating pad November 2nd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Military

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project