Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies

Experimental summary of mechanical measurements in the research of Ilaria Pecorari.
Experimental summary of mechanical measurements in the research of Ilaria Pecorari.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the research of Professor Luisa Mestroni's research laboratory which specializes in the study of genetics of cardiac muscle diseases. They use the JPK NanoWizard® AFM to help the characterization of cardiomyopathies.

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies

Berlin, Germany | Posted on April 24th, 2018


Professor Luisa Mestroni heads a laboratory studying the genetics of cardiac muscle diseases. Based at the University of Colorado Denver and working in conjunction with labs in Italy, the lab's interest is in the genes causing dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVD/C), left ventricular noncompaction and hypertrophic cardiomyopathy.

One of the group's PhD students is Ilaria Pecorari. She is studying the effect of the scaffold on the cardiac cells cytoskeleton. This is mainly focused on the study of mechanical behaviour and mechanotransduction phenomenon in cells carrying a genetic mutation that is responsible for the onset of a pathological condition. She describes the study: “I am currently investigating the response of certain type of cells to different mechanical stimuli, i.e. exposure of cells to substrates with tunable stiffness, but I am also probing the mechanical response of “healthy” and mutant cells via atomic force microscopy (AFM). For the latter, I am exploiting the setup provided by JPK Instruments, in which the atomic force microscope (NanoWizard®4a BioSciences) is coupled with a fluorescence microscope. I infect cells with viral constructs, so they will express both green fluorescent protein (GFP) and the mutant protein known as the cause of disease. The NanoWizard® enables me to simultaneously identify the cells expressing the mutant protein and probe them mechanically. Through the force-deformation curves and their post-processing analysis, I can detect if the genetic mutation affects the mechanical behaviour of a single cell. In the near future, I'd like to assess the mechanical properties of wild type (i.e. “healthy”) and mutant cells on substrates with different rigidities (thus either stiff or soft).”

Describing her experiences with AFM, Ms Pecorari continued; “Having been a user of AFM for eight years, I first used an AFM from JPK in 2016 while working under the supervision of Dr José Luis Toca-Herrera at the BOKU University in Vienna (Austria). Compared to other equipment I have used, the NanoWizard® is extremely user friendly. It is very intuitive, once the working principle of atomic force microscopy is clear. The variety of modes available, included the quantitative imaging (QI™) mode, allows the user to acquire a large variety of data on a sample. While working with living cells, it is crucial to control the temperature setting and the JPK PetriDishHeater™ is reliable and easy to use. The software for the post-processing of data is also very easy to use and quite automatic. So overall, I think that working with JPK’s AFM has guaranteed a high degree of reliability of my observations.”

This work has been published in a review article in Seminars in Cell & Development Biology published by Elsevier in 2017. The group has also published an interesting paper where the AFM is used to monitor the beating of cardiomyocytes grown on a 3D carbon nanotube scaffold. The lead author is Dr Brisa Peńa and is published in the ACS' Applied Materials & Interfaces. It may be viewed here.

For more details about JPK’s AFM systems and their applications for the materials, life & nano sciences, please contact JPK on +49 30726243 500. Alternatively, please visit the web site: http://www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: http://www.youtube.com/jpkinstruments.

References
Lui et al, Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site, NATURE COMMUNICATIONS | 7:10714 | DOI: 10.1038/ncomms10714

Ramalho et al, Analysis of the mechanical properties of wild type and hyperstable mutants of the HIV‑1 capsid, Retrovirology (2016) 13:17 DOI 10.1186/s12977-016-0250-4

Rankovic et al, Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly, J Virol 91:e00289-17. https://doi.org/10.1128/JVI.00289-17 .

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China), Paris (France) and Carpinteria (USA), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Colditzstrasse 34-36
Haus 13, Eingang B
Berlin 12099
Germany
T +49 30726243 500
F +49 30726243 999
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997

www.talking-science.com.

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

News and information

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Nanomedicine

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Discoveries

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Announcements

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Tools

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Nanobiotechnology

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project