Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings

The two rings are linked like a chain and can well be recognized. At the centre there is the T7 RNA Polymerase.
CREDIT
(c) JuliŠn Valero
The two rings are linked like a chain and can well be recognized. At the centre there is the T7 RNA Polymerase. CREDIT (c) JuliŠn Valero

Abstract:
Together with colleagues from the USA, scientists from the University of Bonn and the research institute Caesar in Bonn have used nanostructures to construct a tiny machine that constitutes a rotatory motor and can move in a specific direction. The researchers used circular structures from DNA. The results will now be presented in the journal Nature Nanotechnology.

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings

Bonn, Germany | Posted on April 11th, 2018

Nanomachines include structures of complex proteins and nucleic acids that are powered with chemical energy and can perform directed movements. The principle is known from nature: Bacteria, for example, propel themselves forward using a flagellum. The team of the University of Bonn, the research institute Caesar in Bonn and the University of Michigan (USA) used structures made of DNA nanorings. The two rings are linked like a chain. "One ring fulfills the function of a wheel, the other drives it like an engine with the help of chemical energy", explains Prof. Dr. Michael Famulok from the Life & Medical Sciences (LIMES) Institute of the University of Bonn.

The tiny vehicle measures only about 30 nanometers (millionths of a millimeter). The "fuel" is provided by the protein "T7 RNA polymerase". Coupled to the ring that serves as an engine, this enzyme synthesizes an RNA strand based on the DNA sequence and uses the chemical energy released during this process for the rotational movement of the DNA ring. "As the rotation progresses, the RNA strand grows like a thread from the RNA polymerase", reports lead author Dr. JuliŠn Valero from Famulok's team. The researchers are using this ever-expanding RNA thread, which basically protrudes from the engine as a waste product, to keep the tiny vehicle on its course by using markings on a DNA-nanotube track.

Length of the test drive is 240 nanometers

Attached to this thread, the unicycle machine covered about 240 nanometers on its test drive. "That was a first go", says Famulok. "The track can be extended as desired." In the next step the researchers are not only aiming at expanding the length of the route, but also plan more complex challenges on the test track. At built-in junctions, the nanomachine should decide which way to go. "We can use our methods to predetermine which turn the machine should take", says Valero with a view towards the future.

Of course, the scientists cannot watch the tiny vehicle at work with the naked eye. By using an atomic force microscope that scanned the surface structure of the nanomachine, the scientists were able to visualize the interlocked DNA rings. In addition, the team used fluorescent markers to show that the "wheel" of the machine was actually turning. Fluorescent "waymarkers" along the nanotube path lit up as soon as the nano-unicycle passed them. Based thereupon, the speed of the vehicle could also be calculated: One turn of the wheel took about ten minutes. That's not very fast, but nevertheless a big step for the researchers. "Moving the nanomachine in the desired direction is not trivial", says Famulok.

The components of the machine assemble by self-organisation

Of course, unlike macroscopic machines, the nanomachine was not assembled with a welding torch or wrench. The construction is based on the principle of self-organization. As in living cells, the desired structures arise spontaneously when the corresponding components are made available. "It works like an imaginary puzzle", explains Famulok. Each puzzle piece is designed to interact with very specific partners. If you bring together exactly these partners in a single vessel, each particle will find its partner and the desired structure is automatically created.

By now, scientists worldwide have developed numerous nanomachines and nanoengines. But the method developed by Famulok's team is a completely novel principle. "This is a big step: It is not easy to reliably design and realize such a thing on a nanometer scale", says the scientist. His team wants to develop even more complex nanoengine systems soon. "This is basic research", says Famulok. "It is not possible to see exactly where it will lead." With some imagination, possible applications could for instance include molecular computers that perform logical operations based on molecular movements. Additionally, tiny machines could transport drugs through the bloodstream precisely to where they are required. "But these are still visions of the future", says Famulok.

####

For more information, please click here

Contacts:
Prof. Dr. Michael Famulok

49-228-731-787

Copyright © University of Bonn

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: JuliŠn Valero, Nibedita Pal, Soma Dhakal, Nils G. Walter and Michael Famulok: A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks, Nature Nanotechnology, DOI: 10.1038/s41565-018-0109-z:

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Molecular Nanotechnology

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displaysí back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Research partnerships

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project