Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > How do very small particles behave at very high temperatures?

The two alternative architectures of the gold nanoclusters containing 561 atoms.
CREDIT
Swansea University
The two alternative architectures of the gold nanoclusters containing 561 atoms. CREDIT Swansea University

Abstract:
A Swansea University nanomaterials expert has been looking at how small gold particles survive when subjected to very high temperatures.

How do very small particles behave at very high temperatures?

Swansea, UK | Posted on April 6th, 2018

The research is important to the engineering sector for some potential applications of nanotechnology, for example in catalysis and aerospace, where particles of only nanometre dimensions are subjected to very high temperatures.

The results of the study, which was a 3-way collaboration between Birmingham, Swansea and Genoa University's, was published this week in the journal Nature Communications. The study showed that gold nanoparticles of precisely selected size (561 atoms 14) are remarkably robust against diffusion and aggregation but their internal atomic arrangements do change.

The researchers used an ultrastable, variable-temperature stage in an aberration-corrected scanning transmission electron microscope to subject an array of size-selected gold nanoparticles (or clusters) to temperatures as high as 500 C while imaging them with atomic resolution. The particles were deposited from a nanoparticle source onto thin films of silicon nitride or carbon.

The two alternative architectures of the gold nanoclusters containing 561 atoms

The experiments showed that binding of the gold nanoparticles to the surface, at point defects, proved sufficiently strong to fix them, even at the top of the temperature range. But the atomic structures of the clusters fluctuated under the heat treatment, switching back and forth between two main atom-configurations ("isomers"): these were a face-centred cubic structure, similar to a small piece of bulk gold, and a decahedral arrangement with a symmetry forbidden in an extended crystal. The researchers were even able to measure the tiny difference in energy (only 40 meV) between these two different atomic architectures.

Professor Richard Palmer, head of the Nanomaterials Lab in Swansea University's College of Engineering, commented: "These advanced experiments have allowed us to make a new measurement for nanoparticles deposited on a surface - the difference in energy between two competing atomic arrangements. It's something that the people who use computers to calculate the properties of nanomaterials are particularly excited about, a kind of reference point if you like. And the images show that our little nanoparticles are really rather tough creatures, which bodes rather well for their applications in future industrial manufacturing."

The Swansea Lab's research is focused on scale-up of the production of such nanoparticles by 10 million times to the level of grams, and beyond. As Prof Palmer says: "We need very small things in very large numbers to realise the true potential of nanotechnology ".

####

About Swansea University
Swansea University is a world-class, research-led, dual campus university. The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.
The University's 46-acre Singleton Park Campus is located in beautiful parkland with views across Swansea Bay. The University's 65-acre science and innovation Bay Campus, which opened in September 2015, is located a few miles away on the eastern approach to the city. It has the distinction of having direct access to a beach and its own seafront promenade. Both campuses are close to the Gower Peninsula, the UK's first Area of Outstanding Natural Beauty.

In 2017, Swansea University became the top university in Wales in The Times and The Sunday Times Good University Guide league table, and also won the inaugural Welsh University of the Year title.

It is also ranked within the top 300 best universities in the world in the Times Higher Education World University rankings.

The results of the Research Excellence Framework (REF) 2014 showed the University has achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK, with the 'biggest leap among research-intensive institutions' (Times Higher Education, December 2014) in the UK.

The University has ambitious expansion plans as it moves towards its centenary in 2020, as it continues to extend its global reach and realising its domestic and international ambitions. Swansea University is a registered charity. No.1138342. Visit http://www.swansea.ac.uk

For more information, please click here

Contacts:
Janis Pickwick

01-792-295-050

Copyright © Swansea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper "Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters", by D.M. Foster (University of Birmingham), R. Ferrando (University of Genoa) and R.E. Palmer (Swansea University), is published in Nature Communications, volume 9, page 1323 (2018) and is available open access:

Follow us on Twitter:

Find us on Facebook:

Related News Press

News and information

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Possible Futures

Chirality in 'real-time' January 14th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Discoveries

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Materials/Metamaterials

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Announcements

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Aerospace/Space

Superfluidity: what is it and why does it matter? December 20th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Research partnerships

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project