Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Understanding charge transfers in molecular electronics

Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.
Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.

Abstract:
An international research team, which includes University of Central Florida Professor Enrique del Barco and Christian A. Nijhuis of the National University of Singapore, has found a way to understand and manipulate the transition of charges in molecular junctions.

Understanding charge transfers in molecular electronics

Orlando, FL | Posted on March 30th, 2018

A molecular junction connects molecules to two metallic electrodes, such as gold. For electrons to flow through the junction they need to overcome a barrier. When temperature is increased, the electrons can jump over the barrier more easily.

Charge transfers dominate many chemical reactions, such as when iron rusts and turns brown. The iron loses electrons, causing rust. Iron is a metal, but the same applies to molecular reactions, known as electrochemistry. The science behind molecular charge transfer is well understood in the field of chemistry, and explained by the so-called Marcus Theory.

According to this theory, molecular reaction speeds can be tuned by increasing or decreasing temperature (known as Direct Marcus regime). However, under some circumstances, the reaction can be taken into the Inverted Marcus regime, where the reaction becomes insensitive to changes in temperature, and can jump without crossing a barrier.

Charge transfer processes are also becoming increasingly important in the emerging field of molecular electronics, where scientists aim for the smallest scale for electrical circuits, where the basic building blocks of modern electronics are based on molecules.

One example of this is molecular diodes (molecular devices capable of selecting the flow of charge current), which are of crucial importance as the basic building blocks of molecular circuitry - the future of powering our electronics.

The problem is that scientists have long seen molecular diodes behaving in either of the two Marcus regimes in ways they did not understand.

"We have seen similar molecules behaving in totally different ways, and very different molecules behaving very similarly without any apparent reason," del Barco said. "This is highly surprising at a time where our knowledge of molecular junctions has substantially advanced. With two electrodes and a molecule in between, the charge does not flow; it jumps. But there are times where it shows a barrier, and other times it doesn't, and this is what we've been working hard to figure out."

Working closely with his colleague in Singapore, the team experimented with electric fields and temperature to see how charge flows through different molecular diodes.

Finally, they found a molecule that allowed them to explore the two Marcus regimes, by changing its temperature dependence at will.

"This is a breakthrough. If we think about this complex molecule as two different units coupled together, when the charge jumps into one unit, it generates an electric field on the other, and vice versa," del Barco explained. "This internal electrical gating is proportional to the amount of charge in the molecule as a whole, which it increases with the voltage applied to the device, and makes the molecular diode to transit in between the two Marcus regimes. This is the first time we've seen such a transition in molecular electronics."

Aside from the important implications of this discovery in the field of chemistry, it turns out that this molecule represents the first molecular example of a double quantum dot, with exciting potential in physics. This puts molecular systems in emerging technologies such as quantum information and computation in view.

Quantum dots behave like atoms, but have more accessible energy levels to conduct electricity, making quantum dots an ideal way to power computers and other electronic devices.

Silicon is what powers our smartphones and computers today. In the future, molecular electronics may offer complementary functionalities beyond what is possible with Silicon. Silicon has limitations, and cannot go as small as molecular electronics can. Del Barco says in the future, molecular technology will be used in conjunction with silicon, to create novel electronics applications.

###

Del Barco and Nijuhuis' work, published in Nature Nanotechnology, will contribute to advancing the understanding of quantum technologies.

####

For more information, please click here

Contacts:
Allison Hurtado

407-823-0348

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Possible Futures

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Chip Technology

Future electronic components to be printed like newspapers July 20th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Quantum Computing

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Research partnerships

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Quantum nanoscience

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project