Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Understanding charge transfers in molecular electronics

Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.
Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.

Abstract:
An international research team, which includes University of Central Florida Professor Enrique del Barco and Christian A. Nijhuis of the National University of Singapore, has found a way to understand and manipulate the transition of charges in molecular junctions.

Understanding charge transfers in molecular electronics

Orlando, FL | Posted on March 30th, 2018

A molecular junction connects molecules to two metallic electrodes, such as gold. For electrons to flow through the junction they need to overcome a barrier. When temperature is increased, the electrons can jump over the barrier more easily.

Charge transfers dominate many chemical reactions, such as when iron rusts and turns brown. The iron loses electrons, causing rust. Iron is a metal, but the same applies to molecular reactions, known as electrochemistry. The science behind molecular charge transfer is well understood in the field of chemistry, and explained by the so-called Marcus Theory.

According to this theory, molecular reaction speeds can be tuned by increasing or decreasing temperature (known as Direct Marcus regime). However, under some circumstances, the reaction can be taken into the Inverted Marcus regime, where the reaction becomes insensitive to changes in temperature, and can jump without crossing a barrier.

Charge transfer processes are also becoming increasingly important in the emerging field of molecular electronics, where scientists aim for the smallest scale for electrical circuits, where the basic building blocks of modern electronics are based on molecules.

One example of this is molecular diodes (molecular devices capable of selecting the flow of charge current), which are of crucial importance as the basic building blocks of molecular circuitry - the future of powering our electronics.

The problem is that scientists have long seen molecular diodes behaving in either of the two Marcus regimes in ways they did not understand.

"We have seen similar molecules behaving in totally different ways, and very different molecules behaving very similarly without any apparent reason," del Barco said. "This is highly surprising at a time where our knowledge of molecular junctions has substantially advanced. With two electrodes and a molecule in between, the charge does not flow; it jumps. But there are times where it shows a barrier, and other times it doesn't, and this is what we've been working hard to figure out."

Working closely with his colleague in Singapore, the team experimented with electric fields and temperature to see how charge flows through different molecular diodes.

Finally, they found a molecule that allowed them to explore the two Marcus regimes, by changing its temperature dependence at will.

"This is a breakthrough. If we think about this complex molecule as two different units coupled together, when the charge jumps into one unit, it generates an electric field on the other, and vice versa," del Barco explained. "This internal electrical gating is proportional to the amount of charge in the molecule as a whole, which it increases with the voltage applied to the device, and makes the molecular diode to transit in between the two Marcus regimes. This is the first time we've seen such a transition in molecular electronics."

Aside from the important implications of this discovery in the field of chemistry, it turns out that this molecule represents the first molecular example of a double quantum dot, with exciting potential in physics. This puts molecular systems in emerging technologies such as quantum information and computation in view.

Quantum dots behave like atoms, but have more accessible energy levels to conduct electricity, making quantum dots an ideal way to power computers and other electronic devices.

Silicon is what powers our smartphones and computers today. In the future, molecular electronics may offer complementary functionalities beyond what is possible with Silicon. Silicon has limitations, and cannot go as small as molecular electronics can. Del Barco says in the future, molecular technology will be used in conjunction with silicon, to create novel electronics applications.

###

Del Barco and Nijuhuis' work, published in Nature Nanotechnology, will contribute to advancing the understanding of quantum technologies.

####

For more information, please click here

Contacts:
Allison Hurtado

407-823-0348

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Possible Futures

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Chip Technology

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Quantum Computing

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

USC scientists find a way to enhance the performance of quantum computers: The method has the potential to solve some of society's biggest challenges November 30th, 2018

Nanoelectronics

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Machine learning helps improving photonic applications September 28th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Discoveries

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

Announcements

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Research partnerships

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Quantum nanoscience

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project