Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Understanding charge transfers in molecular electronics

Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.
Enrique del Barco’s work will contribute to advancing the understanding of quantum technologies.

Abstract:
An international research team, which includes University of Central Florida Professor Enrique del Barco and Christian A. Nijhuis of the National University of Singapore, has found a way to understand and manipulate the transition of charges in molecular junctions.

Understanding charge transfers in molecular electronics

Orlando, FL | Posted on March 30th, 2018

A molecular junction connects molecules to two metallic electrodes, such as gold. For electrons to flow through the junction they need to overcome a barrier. When temperature is increased, the electrons can jump over the barrier more easily.

Charge transfers dominate many chemical reactions, such as when iron rusts and turns brown. The iron loses electrons, causing rust. Iron is a metal, but the same applies to molecular reactions, known as electrochemistry. The science behind molecular charge transfer is well understood in the field of chemistry, and explained by the so-called Marcus Theory.

According to this theory, molecular reaction speeds can be tuned by increasing or decreasing temperature (known as Direct Marcus regime). However, under some circumstances, the reaction can be taken into the Inverted Marcus regime, where the reaction becomes insensitive to changes in temperature, and can jump without crossing a barrier.

Charge transfer processes are also becoming increasingly important in the emerging field of molecular electronics, where scientists aim for the smallest scale for electrical circuits, where the basic building blocks of modern electronics are based on molecules.

One example of this is molecular diodes (molecular devices capable of selecting the flow of charge current), which are of crucial importance as the basic building blocks of molecular circuitry - the future of powering our electronics.

The problem is that scientists have long seen molecular diodes behaving in either of the two Marcus regimes in ways they did not understand.

"We have seen similar molecules behaving in totally different ways, and very different molecules behaving very similarly without any apparent reason," del Barco said. "This is highly surprising at a time where our knowledge of molecular junctions has substantially advanced. With two electrodes and a molecule in between, the charge does not flow; it jumps. But there are times where it shows a barrier, and other times it doesn't, and this is what we've been working hard to figure out."

Working closely with his colleague in Singapore, the team experimented with electric fields and temperature to see how charge flows through different molecular diodes.

Finally, they found a molecule that allowed them to explore the two Marcus regimes, by changing its temperature dependence at will.

"This is a breakthrough. If we think about this complex molecule as two different units coupled together, when the charge jumps into one unit, it generates an electric field on the other, and vice versa," del Barco explained. "This internal electrical gating is proportional to the amount of charge in the molecule as a whole, which it increases with the voltage applied to the device, and makes the molecular diode to transit in between the two Marcus regimes. This is the first time we've seen such a transition in molecular electronics."

Aside from the important implications of this discovery in the field of chemistry, it turns out that this molecule represents the first molecular example of a double quantum dot, with exciting potential in physics. This puts molecular systems in emerging technologies such as quantum information and computation in view.

Quantum dots behave like atoms, but have more accessible energy levels to conduct electricity, making quantum dots an ideal way to power computers and other electronic devices.

Silicon is what powers our smartphones and computers today. In the future, molecular electronics may offer complementary functionalities beyond what is possible with Silicon. Silicon has limitations, and cannot go as small as molecular electronics can. Del Barco says in the future, molecular technology will be used in conjunction with silicon, to create novel electronics applications.

###

Del Barco and Nijuhuis' work, published in Nature Nanotechnology, will contribute to advancing the understanding of quantum technologies.

####

For more information, please click here

Contacts:
Allison Hurtado

407-823-0348

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Possible Futures

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Chip Technology

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Quantum Computing

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Nanoelectronics

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Discoveries

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Announcements

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Research partnerships

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Quantum nanoscience

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sound and light trapped by disorder February 8th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project