Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Piezomagnetic material changes magnetic properties when stretched

Top: A piece of BaFe2As2 is stretched while magnetic measurements are taken (the copper wire coil is part of the NMR device). Lower diagram shows atoms in a plane, with black arrows showing how magnetic spins lie in plane and point in opposite directions. Grey arrows show how the magnetic spin of atoms shifts as the material is stretched.
CREDIT
Nicholas Curro, UC Davis
Top: A piece of BaFe2As2 is stretched while magnetic measurements are taken (the copper wire coil is part of the NMR device). Lower diagram shows atoms in a plane, with black arrows showing how magnetic spins lie in plane and point in opposite directions. Grey arrows show how the magnetic spin of atoms shifts as the material is stretched. CREDIT Nicholas Curro, UC Davis

Abstract:
Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds of other devices. Now a group of physicists has found a material with a similar property, but for magnetism. This "piezomagnetic" material changes its magnetic properties when put under mechanical strain.

Piezomagnetic material changes magnetic properties when stretched

Davis, CA | Posted on March 22nd, 2018

"Piezomagnetic materials are rarely found in nature, as far as I'm aware," said Nicholas Curro, professor of physics at UC Davis and senior author of a paper on the discovery published March 13 in the journal Nature Communications.

Curro and colleagues were studying a barium-iron-arsenic compound, BaFe2As2, that can act as a superconductor at temperatures of about 25 Kelvin when doped with small amounts of other elements. This type of iron-based superconductor is interesting because although it has to be kept pretty cold to work, it could be stretched into wires or cables.

BaFe2As2 is what is called a "nematic" crystal because its structure goes through a phase transition before it becomes superconducting. In the case of BaFe2As2, its crystal structure goes from a square to a rectangular configuration.

Curro and graduate students Tanat Kissikov and Matthew Lawson were attempting to study the material by nuclear magnetic resonance (NMR) imaging while stretching it, to see if they could force it into the rectangular configuration. To their surprise, the magnetic properties of BaFe2As2 changed as they stretched it.

The material is not a bulk magnet - the spins of its atoms point in alternating opposite directions, making it an antiferromagnet. But the direction of those magnetic spins does change in a measurable way when under stress, they found.

"The real surprise is that it appears that the direction of magnetism can change and come out of plane," Curro said.

At this point, there's no theory to explain these results, Curro said. His lab is looking to see if other materials can show the same behavior and if mechanical strain can affect the superconducting properties of the material (these experiments were not carried out at temperatures where BaFe2As2 is a superconductor).

The discovery could have applications in new ways to look for strain within materials such as aircraft components, Curro said.

###

Other coauthors on the paper are Rajib Sarkar, Institute for Solid State Physics, Dresden; Blaine Bush, UC Davis; Erik Timmons, Makariy Tanatar, Ruslan Prozorov, Sergey Bud'ko and Paul Canfield, Ames Laboratory, U.S. Department of Energy and Iowa State University; and R. M. Fernandes, University of Minnesota, Minneapolis. The work was supported by NSF and the U.S. Department of Energy Office of Science. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University.

####

For more information, please click here

Contacts:
Andy Fell

Copyright © University of California, Davis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Arrowhead Begins Triple Combination Cohort in Chronic HBV Patients and Earns $25 Million Milestone Payment from Janssen April 23rd, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Magnetism

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid February 28th, 2019

Laboratories

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene April 5th, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

Superconductivity

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Possible Futures

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Arrowhead Begins Triple Combination Cohort in Chronic HBV Patients and Earns $25 Million Milestone Payment from Janssen April 23rd, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Discoveries

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Materials/Metamaterials

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Announcements

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Arrowhead Begins Triple Combination Cohort in Chronic HBV Patients and Earns $25 Million Milestone Payment from Janssen April 23rd, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Aerospace/Space

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere March 7th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

Picosun’s high aspect ratio ALD enables 3D thin-film batteries March 25th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Research partnerships

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project