Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science

In the crystal developed by UCLA researchers, a metallo-organic framework (top and bottom layers of molecules) surrounds central sphere-like shapes, which can rotate at up to 50 billion rotations per second.
CREDIT
Kendall Houk Laboratory/UCLA
In the crystal developed by UCLA researchers, a metallo-organic framework (top and bottom layers of molecules) surrounds central sphere-like shapes, which can rotate at up to 50 billion rotations per second. CREDIT Kendall Houk Laboratory/UCLA

Abstract:
Molecular machines, much smaller than single cells, may one day be able to deliver drugs to kill cancer cells or patrol your body for signs of disease. But many applications of these machines require large arrays of rock-hard moving parts, which would be difficult to build with typical biological structures.

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science

Los Angeles, CA | Posted on January 16th, 2018

Molecules that makes up the solid crystals found in nature are generally so tightly packed together that there's no room for any of them to move. So despite their strength and durability, solid crystals have generally not been considered for applications in molecular machines, which must have moving parts that can respond to stimuli.

Now, UCLA researchers have formed a crystal out of molecules that resemble gyroscopes with solid frames. Since each molecule has an exterior case surrounding a rotating axis, the crystal has a solid exterior but contains moving parts.

The new crystal, described in the journal Proceedings of the National Academy of Sciences, is the first proof that a single material can be both static and moving, or amphidynamic.

"For the first time, we have a crystalline solid with elements that can move as fast inside the crystal as they would in outer space," said Miguel García-Garibay, a UCLA professor of chemistry and biochemistry and senior author of the study.

To create repetitive arrays of molecular machines, or smart materials, researchers have often turned to liquid crystals, which are engineered to use in LCD television screens but also are found in nature. But liquid crystals are relatively slow: Each molecule must entirely change orientation to alter how it interacts with light, to change color or show a new image on a screen, for instance.

García-Garibay and colleagues set out to design a crystalline solid with faster-moving parts. As a starting point, they considered larger, everyday objects that they might be able to replicate at a microscopic scale.

"Two objects we found to be very interesting were compasses and gyroscopes," said García-Garibay, who also is dean of physical sciences in the UCLA College. "We began to create large-scale models; I literally ordered a few hundred toy compasses and started building structures out of them."

There were two keys to mimicking a compass or gyroscope at a smaller scale, the researchers found. First, the structure's exterior case had to be strong enough to maintain its shape around mostly empty space. Second, the interior rotating component had to be as close to spherical as possible.

After some trial and error, the team designed a structure that worked: a metallo-organic case containing both metal ions and a carbon backbone surrounding a spherical molecule called bicyclooctane. In experiments, the resulting compound -- 1,4-bicyclo[2.2.2]octane dicarboxylic acid, a metal-organic framework that the researchers called BODCA-MOF -- behaved as an amphidynamic material.

Not only that, but computer simulations of the crystal confirmed what the experiments were showing: the constantly-spinning BODCA spheres were each rotating at up to 50 billion rotations per second, as fast as they would have in empty space, whether they were rotating clockwise or counterclockwise.

"We were able to use the equations of physics to validate the motions that were occurring in this structure," said Kendall Houk, UCLA's Saul Winstein Professor of Organic Chemistry and one of the paper's authors. "It's an amazing discovery that you can have extremely rapid motions inside this thing that externally is like a rock."

Having proven that such a compound can exist, the researchers now plan to try introducing new properties into BODCA-MOF that would allow an electric, magnetic or chemical stimulus to alter the molecules' motion.

"The ultimate goal is to be able to control motion in these molecular machines so that we can create materials that respond to external stimuli," García-Garibay said. That could lead to faster computer and electronic displays, he added, or technologies that interact with radar, sonar or chemicals.

"With such low barriers for rotation, the results mark substantial progress toward freely rotating molecular components embedded in a crystalline matrix, and toward potential functionality," said Stuart Brown, a UCLA professor of physics and astronomy, and another author of the paper.

###

The study's other authors are Cortnie Vogelsberg, a former graduate student, and Song Yang, a current graduate student, both in UCLA's chemistry and biochemistry department; Fernando Uribe-Romo of the University of Central Florida; and Andrew Lipton of Pacific Northwest National Laboratory.

Funding for the study was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
Stuart Wolpert

310-206-0511

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Chemistry

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

Magnetism

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Molecular Machines

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Molecular Nanotechnology

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project