Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN

Abstract:
Researchers have found that the topological material trisodium bismuthide (Na3Bi) can be manufactured to be as 'electronically smooth' as the highest-quality graphene-based alternative, while maintaining graphene's high electron mobility.

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN

Sydney, Australia | Posted on December 22nd, 2017

Na3Bi is a Topological Dirac Semimetal (TDS), considered a 3D equivalent of graphene in that it shows the same extraordinarily high electron mobility.

In graphene, as in a TDS, electrons move at constant velocity, independent of their energy.

This high electron mobility is highly desirable in materials investigated for fast-switching electronics. The flow of electrons in graphene can be, theoretically, 100 times as fast as in silicon.

However in practice there are limitations to graphene's remarkable electron mobility, driven by the material's two-dimensional nature.

Although graphene itself can be extremely pure, it is far too flimsy to use as a standalone material, and must be bound with another material. And because graphene is atomically thin, impurities in that substrate are able to cause electronic disorder within the graphene.

Such microscopic inhomogeneities, known as 'charge puddles', limit the mobility of charge carriers.

In practice, this means that graphene-based devices must be painstakingly constructed with a graphene sheet laid upon a substrate material that minimises such electronic disorder. Hexagonal boron-nitride (h-BN) is commonly used for this purpose.

But now, researchers at Australia's FLEET research centre have found that trisodium bismuthide (Na3Bi) grown in their labs at Monash University are as electronically smooth as the highest-quality graphene/h-BN.

It's a significant achievement, says lead researcher Dr Mark Edmonds. "This is the first time a 3D Dirac material has been measured in such a way," Dr Edmonds says. "And we are excited to have found such a high degree of electronic smoothness in this material."

The discovery will be critical for advancement of the study of this new topological material, which could have wide applications in electronics. "It's impossible to know how many fields of research this could open," says Dr Edmonds. "The same finding in graphene/h-BN sparked considerable supplementary studies in 2011."

With electronic-smoothness of Na3Bi now demonstrated, an array of other research possibilities open up. There have been many studies into the relativistic (high mobility) flow of electrons in graphene since it was discovered in 2004. With this latest study, similar studies into Na3Bi can be expected.

Na3Bi offers a number of interesting advantages over graphene.

As well as avoiding the difficult construction methods involved in bi-layer graphene/h-BN devices, Na3Bi can be grown on a millimetre scale or larger. Currently, graphene-h-BN is limited to only a few micrometres.

Another significant advantage is the potential to use Na3Bi as the conducting channel in a new generation of transistors - one built upon the science of topological insulators. The study was published in Science Advances in December 2017.

Next steps & topological transistors

"The discovery of electronically-smooth, thin films of TDS are an important step towards switchable topological transistors," says FLEET Director Prof Michael Fuhrer.

"Graphene is a fantastic conductor, but it can't be 'switched off', or controlled," says Prof Fuhrer. "Topological materials, such as Na3Bi, can be switched from conventional insulator to topological insulator by the application of voltage or magnetic field."

Topological insulators are novel materials that behave as electrical insulators in their interior, but can carry a current along their edges. Unlike a conventional electrical path, such topological edge paths can carry electrical current with near-zero dissipation of energy, meaning that topological transistors can switch without burning energy.

Topological materials were recognised in last year's Nobel Prize in Physics.

Topological transistors would 'switch', just as a traditional transistor. The application of a gate potential would switch the edge paths in a Na3Bi channel between being a topological insulator ('on') and a conventional insulator ('off').

The bigger picture: energy use in computation

The overarching challenge is the growing amount of energy used in computation and information technology (IT).

Each time a transistor switches, a tiny amount of energy is burnt, and with trillions of transistors switching billions of times per second, this energy adds up. Already, the energy burnt in computation accounts for 5 per cent of global electricity use, and it's doubling every decade.

For many years, the energy demands of an exponentially growing number of computations was kept in check by ever-more efficient, and ever-more compact computer chips - an effect related to Moore's Law. But as fundamental physics limits are approached, Moore's Law is ending, and there are limited future efficiencies to be found.

"For computation to continue to grow, to keep up with changing demands, we need more-efficient electronics," says Prof Michael Fuhrer. "We need a new type of transistor that burns less energy when it switches."

"This discovery could be a step in the direction of topological transistors that transform the world of computation."

####

About Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies
FLEET is an Australian government-funded research centre: The Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies.

FLEET is a collaboration of almost 100 researchers from seven Australian universities and 13 Australian and international science organisations, including the National University of Singapore, where paper co-author Shaffique Adam and others are based.

FLEET is highly interdisciplinary, with Australia's top researchers in their fields focussing on three paths to achieve ultra-low dissipation conduction:

Topological materials
Exciton superfluids
Light-transformed materials
The research, which is at the cutting edge of what's possible in current physics, is underpinned by the science of atomically thin (two dimensional) materials and nanodevice fabrication.

For more information, please click here

Contacts:
Errol Hunt

61-423-139-210

Dr Mark Edmonds
DECRA Research Fellow FLEET


Prof Michael Fuhrer
Director FLEET

Copyright © Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

2 Dimensional Materials

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Graphene/ Graphite

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Possible Futures

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: From Electrons to Photons Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project