Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists make transparent materials absorb light

This is a schematic of a virtual light absorption process: A layer of a transparent material is exposed to light beams from both sides, with the light intensity increasing in time. Image courtesy of the researchers.
CREDIT
MIPT Press Office
This is a schematic of a virtual light absorption process: A layer of a transparent material is exposed to light beams from both sides, with the light intensity increasing in time. Image courtesy of the researchers. CREDIT MIPT Press Office

Abstract:
A group of physicists from Russia, Sweden, and the U.S. has demonstrated a highly unusual optical effect: They managed to "virtually" absorb light using a material that has no light-absorbing capacity. The research findings, published in Optica, break new ground for the creation of memory elements for light.

Scientists make transparent materials absorb light

Moscow, Russia | Posted on December 1st, 2017

The absorption of electromagnetic radiation -- light, among other things -- is one of the main effects of electromagnetism. This process takes place when electromagnetic energy is converted to heat or another kind of energy within an absorbing material (for instance, during electron excitation). Coal, black paint, and carbon nanotube arrays -- also known as Vantablack -- look black because they absorb the energy of the incident light almost completely. Other materials, such as glass or quartz, have no absorbing properties and therefore look transparent.

In their theoretical research, the results of which were published in the journal Optica, the physicists managed to dispel that simple and intuitive notion by making a completely transparent material appear perfectly absorbing. To achieve that, the researchers employed special mathematical properties of the scattering matrix -- a function that relates an incident electromagnetic field with the one scattered by the system. When a light beam of time-independent intensity hits a transparent object, the light does not get absorbed but is scattered by the material -- a phenomenon caused by the unitary property of the scattering matrix. It turned out, however, that if the intensity of the incident beam is varied with time in a certain fashion, the unitary property can be disrupted, at least for some time. In particular, if the intensity growth is exponential, the total incident light energy will accumulate in the transparent material without leaving it (fig. 1). That being the case, the system will appear perfectly absorbing from the outside.

To illustrate the effect, the researchers examined a thin layer of a transparent dielectric and calculated the intensity profile required for the absorption of the incident light. The calculations confirmed that when the incident wave intensity grows exponentially (the dotted line on fig. 2), the light is neither transmitted nor reflected (the solid curve on fig. 2). That is, the layer looks perfectly absorbing despite the fact that it lacks the actual absorption capacity. However, when the exponential growth of the incident wave amplitude comes to a halt (at t = 0), the energy locked in the layer is released.

"Our theoretical findings appear to be rather counterintuitive. Up until we started our research, we couldn't even imagine that it would be possible to 'pull off such a trick' with a transparent structure," says Denis Baranov, a doctoral student at MIPT and one of the authors of the study. "However, it was the mathematics that led us to the effect. Who knows, electrodynamics may well harbor other fascinating phenomena."

The results of the study not only broaden our general understanding of how light behaves when it interacts with common transparent materials, but also have a wide range of practical applications. To give an example, the accumulation of light in a transparent material may help design optical memory devices that would store optical information without any losses and release it when needed.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

7-977-771-4699

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Possible Futures

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Memory Technology

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Optical computing/Photonic computing

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Photonics/Optics/Lasers

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Future electronic components to be printed like newspapers July 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project