Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Creation of coherent states in molecules by incoherent electrons

Momentum images of H from H2 and D from D2 at different electron energies. The one at 4 eV for H is symmetric, while those above 14 eV are strongly asymmetric. The asymmetry in D is less pronounced and appear to change direction with change in electron energy.
CREDIT
E. Krishnakumar et al, Nature Physics
Momentum images of H from H2 and D from D2 at different electron energies. The one at 4 eV for H is symmetric, while those above 14 eV are strongly asymmetric. The asymmetry in D is less pronounced and appear to change direction with change in electron energy. CREDIT E. Krishnakumar et al, Nature Physics

Abstract:
In a breakthrough experiment using a novel negative ion momentum imaging technique, researchers from Tata Institute of Fundamental Research, Mumbai India and Open University, Milton Kyenes, UK have shown -- for the first time -- that incoherent electrons displaying their quantum mechanical nature, can induce coherence in molecular systems on attachment. Their latest results published in the Journal, Nature Physics (DOI: 10.1038/nphys4289), show that the coherence induced by the capture of single electron by H2 molecule results in the ejection of H? ion in preferentially backward direction with respect to the incoming electron beam. The other product of the dissociation is the H-atom in its excited state. In other words, this coherence induced in the molecule segregates the charge and excess energy in the system in a preferred manner. Similar measurements in the isotopomer of H2 namely D2 does not show such a strong asymmetry in ejection of the fragment ion but shows the reversal of the asymmetry as a function of incoming electron energy.

Creation of coherent states in molecules by incoherent electrons

Mumbai, India | Posted on October 21st, 2017

So far researchers have used such coherence induced by laser beams to control molecular dissociation and have considered it as the basis for possible control of chemical reactions using photons. But in that case, the coherence in the resulting excited molecular entity is understood to stem from the absorbed laser radiation. By demonstrating the presence of such coherence resulting from a capture of an incoherent electron, Prof. Krishnakumar and co-workers have shown that such coherence can also stem from the transfer of more than one value of angular momentum quanta.

On the capture of a low energy electron, a relatively unstable molecular negative ion is formed. Subsequently, this negative ion decays by ejecting the extra electron. However, if the ion survives against the electron ejection, it undergoes dissociation. This is known as dissociative attachment. According to Prof. Krishnakumar, dissociative attachment is traditionally linked with transfer of multiple values of angular momentum quanta in the molecular system. However, it is for the first time such a quantum coherent response has been observed from a molecule.

Low energy electrons are ubiquitous and are known to play important role in variety of phenomena relevant to astrochemistry (where they participate in synthesis of new molecules), in radiation biology (where they cause chemical changes in living cell, plasma chemistry), atmospheric chemistry, radioactive waste management and nanolithography -- to name but a few. In all these cases, dissociative attachment plays a critical role. The unstable excited molecular negative ion states are at the core of this process. However, due to very short lifetime of these species very little is known about them at present.

The group led by Prof. Krishnakumar and Dr. Prabhudesai in TIFR has pioneered research on several aspects of low energy electron interactions with molecules in gas and condensed phase with particular emphasis on the possibility of controlling chemical reactions using low energy electrons. These new results point to rich unexplored dynamics of excited molecular negative ions that might open up new possibilities in inducing chemical control. They also pose a challenge to theoreticians to come up with a detailed model for the negative ion chemistry that is associated with low energy free electron scattering.

These measurements were carried out by Prof. Krishnakumar using an experiment built by him at the Open University in UK, where he was on invitation as a Marie Curie Professor to help build a novel electron scattering experiment for the European scientists, similar to the one he had conceived and built at TIFR. Dr. Prabhudesai and Prof. Krishnakumar provided the interpretation of the data along with the model.

####

For more information, please click here

Contacts:
E. Krishnakumar

91-986-901-3407

Copyright © Tata Institute of Fundamental Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Imaging

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Chemistry

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Discoveries

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Tools

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Photonics/Optics/Lasers

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project