Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range

Graphene Flagship researches create a terahertz saturable absorber using printable graphene inks with an order of magnitude higher absorption modulation than other devices produced to date
CREDIT
Graphene Flagship
Graphene Flagship researches create a terahertz saturable absorber using printable graphene inks with an order of magnitude higher absorption modulation than other devices produced to date CREDIT Graphene Flagship

Abstract:
Graphene Flagship researches from CNR-Istituto Nanoscienze, Italy and the University of Cambridge, UK have shown that it is possible to create a terahertz saturable absorber using graphene produced by liquid phase exfoliation and deposited by transfer coating and ink jet printing. The paper, published in Nature Communications, reports a terahertz saturable absorber with an order of magnitude higher absorption modulation than other devices produced to date.

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range

Cambridge, UK | Posted on September 13th, 2017

A terahertz saturable absorber decreases its absorption of light in the terahertz range (far infrared) with increasing light intensity and has great potential for the development of terahertz lasers, with applications in spectroscopy and imaging. These high-modulation, mode-locked lasers open up many prospects in applications where short time scale excitation of specific transitions are important, such as time-resolved spectroscopy of gasses and molecules, quantum information or ultra-high speed communication.

"We started working on saturable terahertz absorbers to solve the problem of producing a miniaturized mode-locked terahertz laser with thin and flexible integrated components that also had good modulation" said Graphene Flagship researcher Miriam Vitiello from CNR-Istituto Nanoscienze in Italy.

Graphene is a promising saturable absorber as it has intrinsic broadband operations and ultrafast recovery time along with an ease of fabrication and integration, as first demonstrated in ultra-fast infra-red lasers by Flagship partner University of Cambridge. In the terahertz range, the present paper exploits graphene produced by liquid phase exfoliation, a method ideally suited to mass production, to prepare inks, easily deposited by transfer coating or ink jet printing

"It was important to us to use a type of graphene that could be integrated into the laser system with flexibility and control" said Vitiello "Ink jet printing along with transfer coating achieved that."

Using mode-locked lasers to produce ultra fast pulses in the terahertz range can have interesting and exciting uses. "These devices could have applications in medical diagnostics when time of flight topography is of importance - you could see a tumour inside a tissue" said Vitiello.

Frank Koppens, of the Institute of Photonic Sciences in Spain, is the leader of the Graphene Flagship's Photonics and Optoelectronics Work Package, which focuses on developing graphene-based technologies for imaging and sensing, data transfer and other photonics applications. "This is a new discovery with immediate impact on applications. Clearly, this is a case where graphene beats existing materials in terms of efficiency, scalability, compactness and speed" he said.

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its Management Panel added "It is an important milestone to have demonstrated that easily produced and printable graphene inks can also serve to enable ultrafast lasers in the terahertz range. Since the Flagship's inception, a variety of lasers have been made covering the visible to IR spectral range, but now the important THz range, with applications in security and medical diagnostic, is finally made accessible by graphene, starting yet another possible application field."

####

For more information, please click here

Contacts:
Sian Fogden

44-012-237-62418

Copyright © Graphene Flagship

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Graphene/ Graphite

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Secure metropolitan quantum networks move a step closer May 31st, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Nanomedicine

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Tools

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Photonics/Optics/Lasers

New record: 3D-printed optical-electronic integration June 18th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

New record: 3D-printed optical-electronic integration June 18th, 2019

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

Researchers grow cells in 'paper organs' May 1st, 2019

Tuneable reverse photochromes in the solid state April 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project