Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sharks with frickin' lasers: Gold nanoparticles fry cancer on glowing mice

Thomas Flaig, MD, describes the use of gold nanoparticles, lasers, antibodies and bioluminescence to target bladder cancer.
CREDIT
University of Colorado Cancer Center
Thomas Flaig, MD, describes the use of gold nanoparticles, lasers, antibodies and bioluminescence to target bladder cancer. CREDIT University of Colorado Cancer Center

Abstract:
A University of Colorado Cancer Center study takes a new approach to killing cancer: Why not fry it into oblivion with vibrating gold nanoparticles? "But what about the frickin' lasers?" you may ask. Don't worry. There are lasers. And bioluminescence too.

Sharks with frickin' lasers: Gold nanoparticles fry cancer on glowing mice

Denver, CO | Posted on August 31st, 2017

Very basically it works like this: An "antibody" is an agent of the immune system that attaches to an "antigen" -- usually antibodies recognize antigens on a virus or bacteria and attach to the invader to mark it for destruction by other immune cells. In this case, CU Cancer Center researchers engineered an antibody to recognize and attach to a protein called EGFR. Bladder tumors but not healthy cells often slather themselves in EGFR. Other researchers have hooked molecules of chemotherapy to antibodies that recognize EGFR and have used this antibody-antigen system to micro-target the delivery of chemotherapy. In this case, researchers used nifty chemistry to attach gold nanoparticles to antibodies (because, gold nanoparticles).

Imagine it: Now you have a two-part thingy made from a gold nanoparticle attached to an antibody that seeks out and binds to EGFR on the surface of bladder tumors. If only there were a way evilize the nanoparticles!

Oh, but there is. It's called plasmon resonance, which is a physics term for the process that makes nanoparticles vibrate in certain frequencies of light. You can "tune" nanoparticles to experience plasmon resonance at a chosen frequency. This is undoubtedly very groovy but what's really going on is energy transfer from the light to the particle in a way that creates heat -- and a lot of it in a very small area. In this study, researchers tuned their gold nanoparticles to experience plasmon resonance in near infrared light -- a wavelength of light that is generally safe by itself. Finally, when they shined a laser's near infrared light on the nanoparticle-antibody conjugate, it aggravated the nanoparticles, which heated up and fried the nearby tumor tissue like Han Solo with a DL-44 heavy blaster pistol.

Evaluating the results required bioluminescence.

That's because the test tumors were very small bumps on the bladders of mice. It wouldn't have been possible to measure them by hand. Instead, tumors were grown using cells that express the enzyme luciferase, which makes them glow, like fireflies... The more a mouse bladder glowed, the more cancer was present. And conversely, the less it glowed, the more cancer had been killed by hot nanoparticles.

The study compared mice injected with EGFR-directed nanoparticles and laser light to mice only treated with laser light and found that, indeed, tumors in mice with targeted gold nanoparticles glowed less than their counterparts in the control group. In fact, these tumors glowed less than they had before treatment, implying that the technique had successfully slowed and even reversed tumor growth. Side effects were minimal.

"We are highly encouraged by these results," says Thomas Flaig, MD, associate dean for Clinical Research at University of Colorado School of Medicine and Chief Clinical Research Officer of UCHealth.

The project represents a long-term collaboration between Flaig and Won Park, PhD, the N. Rex Sheppard Professor in the Department of Electrical, Computer & Energy Engineering at CU Boulder.

"It's one of the great stories in scientific collaboration - Won was on a sabbatical of sorts here on campus and we sat down and started talking about ideas around our mutual interests. How could we bring the nanorods to a tumor? The answer was EGFR. What cancer site would allow us to deliver infrared light? Oh, the bladder! And how would be deliver it? Well, in bladder cancer there are already lights on the scopes used in clinical practice that could do the job. It's been an interesting problem-solving experience pursuing this technique from a futuristic idea to something that now shows real promise in animal models," Flaig says.

The article titled "The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model" is published online ahead of print in the journal Bladder Cancer.

####

For more information, please click here

Contacts:
Garth Sundem

Copyright © University of Colorado

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Cancer

University of Virginia Cancer Center and Keystone Nano Announce Start of Clinical Testing of Ceramide Nanoliposome for Treatment of Solid Tumors August 28th, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Possible Futures

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

GLOBALFOUNDRIES Delivers 8SW RF SOI Technology for Next-Generation Mobile and 5G Applications: Advanced 8SW 300mm SOI technology enables cost-effective, high-performance RF front-end modules for 4G LTE mobile and sub-6GHz 5G applications September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Photonics/Optics/Lasers

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project