Home > Press > Researchers printed graphene-like materials with inkjet
![]() |
An international research team has developed inks made of graphene-like materials for inkjet printing. New black phosphorous inks are compatible with conventional inkjet printing techniques for optoelectronics and photonics. Video and photo credit: University of Cambridge |
Abstract:
An international research team has developed inks made of graphene-like materials for inkjet printing. New black phosphorous inks are compatible with conventional inkjet printing techniques for optoelectronics and photonics.
Since the discovery of the Nobel Prize winning material graphene, many new nanomaterials promise to deliver exciting new photonic and optoelectronic technologies. Black phosphorous is a particularly interesting post-graphene nanomaterial for next generation photonic and optoelectronic devices. Yet despite remarkable performance in the lab, practical real-world exploitation of this material has been hindered by complex material fabrication and its poor environmental stability. "Our inkjet printing demonstration makes possible for the first time the scalable mass fabrication of black phosphorous based photonic and optoelectronic devices with long-term stability necessary for a wide range of industrial applications", tells Professor Zhipei Sun at Aalto University in Finland.
Scientists optimized the chemical composition to achieve a stable ink through the balance of complex and competing fluidic effects. This enabled the production of new functional photonic and optoelectronic devices by inkjet printing with excellent print quality and uniformity - just like the printing of intricate graphics or photographs on paper. The researchers' work demonstrated the benefits of their novel technique by inkjet printing devices that take advantage of the properties of black phosphorous, not least its semiconducting bandgap that can be readily varied by engineering the number of atomic layers and can cover the visible and near-infrared region of the electromagnetic spectrum.
The researchers also demonstrated printed black phosphorous based nonlinear optical devices that can be easily inserted into lasers to act as ultra-quick optical shutters, converting a continuous beam of laser radiation into a repetitive series of very short bursts of light suited for industrial and medical applications, such as machining, imaging and sensing. In the study, black phosphorous was also able to act as an efficient and highly-responsive detector of light, extending the wavelength range over which conventional silicon-based photodetectors can operate.
Importantly, the researchers showed that the black phosphorous ink can be seamlessly integrated with existing complementary metal-oxide-semiconductor (CMOS) technologies, while the inkjet printing technique developed offering the prospect of supporting the fabrication of so-called heterostructured materials that aim to capitalize on the benefits of distinct, yet complementary properties of multiple nanomaterial layers through controlled fabrication.
The new ink was developed by an interdisciplinary team of international researchers at Aalto University, University of Cambridge (UK), Imperial College London (UK) and Beihang University (China). The research was supported by the Academy of Finland, Tekes - the Finnish Funding Agency for Innovation, Nokia Foundation and European Commission.
####
For more information, please click here
Contacts:
Zhipei Sun
358-504-302-820
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Graphene/ Graphite
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
A little soap simplifies making 2D nanoflakes: Rice lab’s experiments refine processing of hexagonal boron nitride January 27th, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Videos/Movies
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
Govt.-Legislation/Regulation/Funding/Policy
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
Possible Futures
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Optical computing/Photonic computing
New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Sensors
CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021
Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
Discoveries
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Materials/Metamaterials
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Announcements
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Industrial
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020
Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020
Photonics/Optics/Lasers
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021
Research partnerships
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Weak force has strong impact on nanosheets: Rice lab finds van der Waals force can deform nanoscale silver for optics, catalytic use December 15th, 2020
Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020
New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |