Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tests show no nanotubes released during utilisation of nanoaugmented materials

Abstract:
Recent research on the most novel additive – single wall carbon nanotubes – has demonstrated an impressive result: in contrast to conventional additives, no protruding particles appear and no free-standing particles are released when materials containing these nanotubes are being mechanically stressed during simulation of their typical use. Furthermore, nanotube-formulated materials release significantly fewer micro-size or ultrafine particles, demonstrating their high strength and cohesion improvement.

Tests show no nanotubes released during utilisation of nanoaugmented materials

Luxembourg | Posted on June 9th, 2017

End-users and hi-tech manufacturers of products that use nano- and- and micro-sized carbon additives such as multi wall carbon nanotubes and carbon fiber have been concerned for some time about the release of particles during damage to the material. Health and safety testing on migration of single wall carbon nanotubes from a material’s matrix was initiated by OCSiAl, the world’s largest manufacturer of single wall carbon nanotubes branded TUBALL, and conducted by VITO, a leading European independent research and technology organisation. Simulation experiments on blank and TUBALL-nanoaugmented epoxy, polyethylene and elastomer materials were carried inside a test chamber and any possible aerosol release was captured and measured with a TEM microscope.

TEM analysis revealed a remarkable outcome – in the drilling and Taber abrading tests, no free-standing or protruding single wall carbon nanotubes were found. Another significant finding was that the number of nano-sized particles released from the TUBALL-nanoaugmented materials in comparison with the blank materials decreased by up to 35%, depending on the type of the material. This is yet another demonstration of the bonding power of single wall carbon nanotube that enables a 3D nanotube network to greatly strengthen the material’s structure. This exciting enhancement of a material’s physical properties is the subject of ongoing research.

OCSiAl is leading the charge in raising the transparency of the management of single wall carbon nanotubes by analysing and openly discussing health and safety issues. The company is constantly investing in HSR projects conducted by independent universities and research institutes. OCSiAl is an Associated Partner of the new EC4SafeNano project (EU’s Horizon 2020 research and innovation programme), which aims to ensure the sustainable production and use of nanotechnology. Moreover, OCSiAl is the world’s first manufacturer of single wall carbon nanotubes to have registered them with the EU'’s Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulations. This allows the company to produce and commercialise up to 10 tonnes of TUBALL in Europe annually, and significantly boosts nanotube applications in a wide range of industries.

####

About OCSiAl
OCSiAl is a hi-tech company producing, on an industrial scale, TUBALL™ single wall carbon nanotubes – an advanced additive that improves the properties of base materials. The dominance of nanotubes is related to their exceptional conductivity to weight ratio (as conductive as Cu but 5× lighter), temperature resistance (up to 1000°C) and strength (100× stronger than steel). As little as 0.01% of TUBALL™ enables the use of less raw material while producing more high-performance end products. To simplify nanotube handling, OCSiAl provides TUBALL™ MATRIX, an off-the-shelf super-concentrate for increased conductivity, vivid colours, and better yield and performance in elastomers, composites, coatings and batteries. The company holds 90% of the world’s single wall carbon nanotube market, with a 10 tonne production capacity that will increase to 60 tonnes by 2018. Headquartered in Luxembourg, it has footprints in the USA, Russia, Korea, China, Hong Kong and India.

For more information, please click here

Copyright © OCSiAl

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Materials/Metamaterials

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Safety-Nanoparticles/Risk management

NIOSH Releases New Nanotechnology Workplace Design Recommendations March 13th, 2018

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project