Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli

Examples of cell tissue modulus vs frequency maps obtained using the JPK NanoWizard® and CellHesion® systems
Examples of cell tissue modulus vs frequency maps obtained using the JPK NanoWizard® and CellHesion® systems

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the work of Professor Marco De Spirito's research group at the Catholic University of Rome. The group uses a NanoWizard® AFM and CellHesion® module to study how cells sense and respond to mechanical stimuli.

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli

Berlin, Germany | Posted on April 5th, 2017

Dr Gabriele Ciasca and Professor Massimiliano Papi are members of the research team of Professor Marco De Spirito in the Institute of Physics at the Catholic University of Rome, Italy. One of the main goals of their group is the investigation of how cells sense and respond to physical and mechanical stimuli. Professor De Spirito says that a deeper knowledge of cell biomechanics can boost the understanding of how mechanical properties affect and are affected by the development of many pathological states including cancer.

An example of this research has been reported in a recent clinical paper published in the high impact factor journal Nanoscale. This paper, “Nano-mechanical signature of brain tumours,” was carried out in collaboration with Dr Tanya Enny Sassun during her PhD in the group of Professor Delfini, head of the Department of Neurology and Psychiatry, Neurosurgery (Sapienza University of Rome). The research group studied the biomechanical fingerprint of the two most frequent malignant and benign brain tumours: the highly aggressive Glioblastoma and the slowly-growing Meningioma. They investigated the complex biophysical interplay between neoplastic cells and the tumour microenvironment using the NanoWizard® AFM from JPK. This showed that AFM is able to easily distinguish between cancerous and healthy peritumoural tissues.

Eleonora Minelli - who works as a PhD student in the group of Professor De Spirito - takes up the story of how this work has been extended. “The acquisition of elasticity maps of surgically removed tissues is plagued by the problem of roughness that is often larger than the available range of the piezoelectric actuator. This meant we have had to develop a novel procedure that allowed us to acquire elasticity maps of an unparalleled size (up to 100 µm x 100 µm). We achieved this result thanks to the use of the JPK CellHesion® module that can be easily integrated to our NanoWizard®. This has a z-piezoelectric actuator with a range of 100 µm. These results open up many applications in nanomedicine and have the potential to boost the use of AFM in clinical practice. AFM, together with confocal microscopy and electron microscopy, are key tools in this research area because it allows us to probe mechanical and topographical properties of molecules, cells and tissues in nearly all environments.”

Dr Ciasca, Professor Papi and their colleagues have a lot of experience using different makes of AFM. “The members of our group have been working with many general-purpose AFM set-ups. Now, we are deeply convinced that the JPK NanoWizard® offers one of the best suited experimental set-ups for the investigation of biological systems. There are a number of reasons for this. The instrument has an easy, accurate and effective cantilever calibration procedure. We believe this is a key advantage of this platform as it ensures reproducibility and reliability of results. This is particularly important when dealing with the nanoscale mechanical properties of cells and tissues that are intrinsically subjected to a large biological variability. The geometry of the scanning head is a unique characteristic of the JPK NanoWizard®. It opens the possibility to investigate cells and tissues directly within conventional petri dishes in a liquid environment. This key characteristic allowed us to investigate the mechanical and structural properties of living cells in their own environment without the need of fixation procedures that deeply alter mechanical and morphological properties. Most importantly, the NanoWizard® in our laboratory offers effective integration with a conventional inverted fluorescence microscopy which allows us to combine fluorescence and optical images with elasticity maps.”

The Group publishes extensively. Some of their most recent key publications include:

Nano-mechanical signature of brain tumours (Nanoscale 8 (47), 19629-19643) by G Ciasca et al.

Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level (Nanoscale, 2015,7, 17030-17037 DOI: 10.1039/C5NR03145A) by G Ciasca et al.

Bacteria Meet Graphene: Modulation of Graphene Oxide Nanosheet Interaction with Human Pathogens for Effective Antimicrobial Therapy (ACS Biomaterials Science & Engineering, 2017) by V Palmieri et al.

Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer (Soft Matter, 2015,11, 5719-5726 DOI: 10.1039/C5SM01089F) by Dr V Palmieri et al.

For more details about JPK's AFM systems and their applications for the materials, life & nano sciences, please contact JPK on +49 30726243 500. Alternatively, please visit the web site: www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China), Paris (France) and Carpinteria (USA), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Colditzstrasse 34-36
Haus 13, Eingang B
Berlin 12099
Germany
T +49 30726243 500
F +49 30726243 999
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com.

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Imaging

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project